nLab
M2-brane

Contents

Contents

Idea

The theory of 11-dimensional supergravity contains a higher gauge field – the supergravity C-field – that naturally couples to higher electrically charged 2-branes, membranes (Bergshoeff-Sezgin-Townsend 87). By double dimensional reduction, these turn into the superstrings of type IIA string theory (Duff-Howe-Inami-Stelle 87). (See at duality between M-theory and type IIA string theory.)

When in (Witten95) it was argued that the 10-dimensional target space theories of the five types of superstring theories are all limiting cases of one single 11-dimensional target space theory that extends 11-dimensional supergravity (M-theory), it was natural to guess that this supergravity membrane accordingly yields a 3-dimensional sigma-model that reduces in limiting cases to the string sigma-models.

But there were two aspects that make this idea a little subtle, even at this vague level: first, there is no good theory of the quantization of the membrane sigma-model, as opposed to the well understood quantum string. Secondly, that hypothetical “theory extending 11-dimensional supergravity” (“M-theory”) has remained elusive enough that it is not clear in which sense the membrane would relate to it in a way analogous to how the string relates to its target space theories (which is fairly well understood).

Later, with the BFSS matrix model some people gained more confidence in the idea, by identifying the corresponding degrees of freedom in a special case (Nicolai-Helling 98, Dasgupta-Nicolai-Plefka 02). See also at membrane matrix model.

In a more modern perspective, the M2-brane worldvolume theory appears under AdS4-CFT3 duality as a holographic dual of a 4-dimensional Chern-Simons theory. Indeed, its Green-Schwarz action functional is entirely controled by the super-Lie algebra 4-cocycle of super Minkowski spacetime given by the brane scan. This exhibits the M2-brane worldvolume theory as a 3-dimensional higher dimensional WZW model.

Definition

There are two different incarnations of the M2-brane. On the one hand it is defined as a Green-Schwarz sigma model with target space a spacetime that is a solution to the equations of motion of 11-dimensional supergravity. One would call this the “fundamental” M2 in analogy with the “fundamental string”, if only there were an “M2-perturbation series” which however is essentially ruled out.

On the other hand the M2 also appears as a black brane, hence as a solution to the equations of motion of 11-dimensional supergravity with singularity that looks from outside like a charged 2 dimensional object.

As a Green-Schwarz sigma model

See at Green-Schwarz sigma model and brane scan.

As a black brane

As a black brane solution to the equations of motion of 11-dimensional supergravity the M2 is the spacetime 2,1×( 8{0})\mathbb{R}^{2,1} \times (\mathbb{R}^8-\{0\}) with pseudo-Riemannian metric being

g=H 2/3g 2,1+H 1/3g 8{0} g = H^{-2/3} g_{\mathbb{R}^{2,1}} + H^{1/3}g_{\mathbb{R}^8-\{0\}}

where

H=α+βr 6 H = \alpha + \frac{\beta}{r^6}

for (α,β) 2{(0,0)}(\alpha,\beta) \in \mathbb{R}^2 \setminus \{(0,0)\};

and the field strength of the supergravity C-field is

F=dvol 2,1dH 1. F = d vol_{\mathbb{R}^{2,1}} \wedge \mathbf{d} H^{-1} \,.

For αβ0\alpha \beta \neq 0 this is a 1/2 BPS state of 11d sugra.

In the above coordinates the metric is ill-defined at r=β 1/6αr = - \beta^{1/6} \alpha, but in fact it may be smoothly continued through this point (Duff-Gibbons-Townsend 94, section 3), which is a event horizon. An actual singularity is at r=0r = 0.

The near horizon geometry of this spacetime is the Freund-Rubin compactification AdS4×\timesS7. For more on this see at AdS-CFT.

1/2 BPS black branes in supergravity: D-branes, F1-brane, NS5-brane, M2-brane, M5-brane

(table taken from Blumenhagen-Lüst-Theisen 13, Chapter 18.5)

More generally, one may classify those solutions of 11-dimensional supergravity of the form AdS 4×X 7AdS_4 \times X_7 for some closed manifold X 7X_7, that are at least 1/2 BPS states. One finds (Medeiros-Figueroa 10) that all these are of the form AdS 4×S 7/G ADEAdS_4 \times S^7/G_{ADE}, where S 7/G ADES^7 / G_{ADE} is an orbifold of the 7-sphere (a spherical space form in the smooth case, see there) by a finite subgroup of SU(2) G ADESU(2)G_{ADE} \hookrightarrow SU(2), i.e. a finite group in the ADE-classification

ADE classification and McKay correspondence

Dynkin diagram/
Dynkin quiver
dihedron,
Platonic solid
finite subgroups of SO(3)finite subgroups of SU(2)simple Lie group
A n1A_{n \geq 1}cyclic group
n+1\mathbb{Z}_{n+1}
cyclic group
n+1\mathbb{Z}_{n+1}
special unitary group
SU(n+1)SU(n+1)
A1cyclic group of order 2
2\mathbb{Z}_2
cyclic group of order 2
2\mathbb{Z}_2
SU(2)
A2cyclic group of order 3
3\mathbb{Z}_3
cyclic group of order 3
3\mathbb{Z}_3
SU(3)
A3
=
D3
cyclic group of order 4
4\mathbb{Z}_4
cyclic group of order 4
2D 2 42 D_2 \simeq \mathbb{Z}_4
SU(4)
\simeq
Spin(6)
D4dihedron on
bigon
Klein four-group
D 4 2× 2D_4 \simeq \mathbb{Z}_2 \times \mathbb{Z}_2
quaternion group
2D 42 D_4 \simeq Q8
SO(8), Spin(8)
D5dihedron on
triangle
dihedral group of order 6
D 6D_6
binary dihedral group of order 12
2D 62 D_6
SO(10), Spin(10)
D6dihedron on
square
dihedral group of order 8
D 8D_8
binary dihedral group of order 16
2D 82 D_{8}
SO(12), Spin(12)
D n4D_{n \geq 4}dihedron,
hosohedron
dihedral group
D 2(n2)D_{2(n-2)}
binary dihedral group
2D 2(n2)2 D_{2(n-2)}
special orthogonal group, spin group
SO(2n)SO(2n), Spin(2n)Spin(2n)
E 6E_6tetrahedrontetrahedral group
TT
binary tetrahedral group
2T2T
E6
E 7E_7cube,
octahedron
octahedral group
OO
binary octahedral group
2O2O
E7
E 8E_8dodecahedron,
icosahedron
icosahedral group
II
binary icosahedral group
2I2I
E8

Here for 5𝒩8 5 \leq \mathcal{N} \leq 8-supersymmetry then the action of G ADEG_{ADE} on S 7S^7 is via the canonical action of SU(2)SU(2) as in the quaternionic Hopf fibration (Medeiros-Figueroa 10), while for 𝒩=4\mathcal{N} = 4 then there is an extra twist to the action (MFFGME 09). See the table below.

Properties

Quantization via BFSS matrix model

A regularized quantization of the Green-Schwarz sigma-model for the M2-brane yields the BFSS matrix model (Nicolai-Helling 98, Dasgupta-Nicolai-Plefka 02).

In this correspondence, matrix blocks around the diagonal correspond to blobs of membrane, while off-diagonal matrix elements correspond to thin tubes of membrane connecting these blobs.

graphics grabbed from Dasgupta-Nicolai-Plefka 02

Worldvolume theory – BLG and ABJM

The worldvolume QFT of black M2-branes is a 3d superconformal gauge field theory:

ddNNsuperconformal super Lie algebraR-symmetryblack brane worldvolume
superconformal field theory
via AdS-CFT
A3A\phantom{A}3\phantom{A}A2k+1A\phantom{A}2k+1\phantom{A}AB(k,2)\phantom{A}B(k,2) \simeq osp(2k+1|4)A(2k+1 \vert 4)\phantom{A}ASO(2k+1)A\phantom{A}SO(2k+1)\phantom{A}
A3A\phantom{A}3\phantom{A}A2kA\phantom{A}2k\phantom{A}AD(k,2)\phantom{A}D(k,2)\simeq osp(2k|4)A(2k \vert 4)\phantom{A}ASO(2k)A\phantom{A}SO(2k)\phantom{A}M2-brane
D=3 SYM
BLG model
ABJM model
A4A\phantom{A}4\phantom{A}Ak+1A\phantom{A}k+1\phantom{A}AA(3,k)𝔰𝔩(4|k+1)A\phantom{A}A(3,k)\simeq \mathfrak{sl}(4 \vert k+1)\phantom{A}AU(k+1)A\phantom{A}U(k+1)\phantom{A}D3-brane
D=4 N=4 SYM
D=4 N=2 SYM
D=4 N=1 SYM
A5A\phantom{A}5\phantom{A}A1A\phantom{A}1\phantom{A}AF(4)A\phantom{A}F(4)\phantom{A}ASO(3)A\phantom{A}SO(3)\phantom{A}D4-brane
D=5 SYM
A6A\phantom{A}6\phantom{A}AkA\phantom{A}k\phantom{A}AD(4,k)\phantom{A}D(4,k) \simeq osp(8|2k)A(8 \vert 2k)\phantom{A}ASp(k)A\phantom{A}Sp(k)\phantom{A}M5-brane
D=6 N=(2,0) SCFT
D=6 N=(1,0) SCFT

(Shnider 88, also Nahm 78, see Minwalla 98, section 4.2)

Specifically, worldvolume quantum field theory of M2-branes sitting at ADE singularities (as above) is supposed to be described by ABJM theory and, for the special case of SU(2)SU(2) gauge group, by the BLG model. See also at gauge enhancement.

NN Killing spinors on
spherical space form S 7/G^S^7/\widehat{G}
AAG^=\phantom{AA}\widehat{G} =spin-lift of subgroup of
isometry group of 7-sphere
3d superconformal gauge field theory
on back M2-branes
with near horizon geometry AdS 4×S 7/G^AdS_4 \times S^7/\widehat{G}
AAN=8AA\phantom{AA}N = 8\phantom{AA}AA 2\phantom{AA}\mathbb{Z}_2cyclic group of order 2BLG model
AAN=7AA\phantom{AA}N = 7\phantom{AA}
AAN=6AA\phantom{AA}N = 6\phantom{AA}AA k>2\phantom{AA}\mathbb{Z}_{k\gt 2}cyclic groupABJM model
AAN=5AA\phantom{AA}N = 5\phantom{AA}AA2D k+2\phantom{AA}2 D_{k+2}
2T2 T, 2O2 O, 2I2 I
binary dihedral group,
binary tetrahedral group,
binary octahedral group,
binary icosahedral group
(HLLLP 08a, BHRSS 08)
AAN=4AA\phantom{AA}N = 4\phantom{AA}A2D k+2\phantom{A}2 D_{k+2}
2O2 O, 2I2 I
binary dihedral group,
binary octahedral group,
binary icosahedral group
(HLLLP 08b, Chen-Wu 10)

AdS4-CFT3 duality

Under AdS-CFT duality the M2-brane is given by AdS4-CFT3 duality. (Maldacena 97, section 3.2, Klebanov-Torri 10).


M2/M5 bound states

For M2-M5 brane bound states, i.e. bound states of M2-branes with M5-branes (dyonic M2-branes and giant gravitons), see the references below.

For the type II string theory-version see at NS5-brane the sectoin NS5/D4/D2 bound states.


Table of branes appearing in supergravity/string theory (for classification see at brane scan).

branein supergravitycharged under gauge fieldhas worldvolume theory
black branesupergravityhigher gauge fieldSCFT
D-branetype IIRR-fieldsuper Yang-Mills theory
(D=2n)(D = 2n)type IIA\,\,
D(-2)-brane\,\,
D0-brane\,\,BFSS matrix model
D2-brane\,\,\,
D4-brane\,\,D=5 super Yang-Mills theory with Khovanov homology observables
D6-brane\,\,D=7 super Yang-Mills theory
D8-brane\,\,
(D=2n+1)(D = 2n+1)type IIB\,\,
D(-1)-brane\,\,\,
D1-brane\,\,2d CFT with BH entropy
D3-brane\,\,N=4 D=4 super Yang-Mills theory
D5-brane\,\,\,
D7-brane\,\,\,
D9-brane\,\,\,
(p,q)-string\,\,\,
(D25-brane)(bosonic string theory)
NS-branetype I, II, heteroticcircle n-connection\,
string\,B2-field2d SCFT
NS5-brane\,B6-fieldlittle string theory
D-brane for topological string\,
A-brane\,
B-brane\,
M-brane11D SuGra/M-theorycircle n-connection\,
M2-brane\,C3-fieldABJM theory, BLG model
M5-brane\,C6-field6d (2,0)-superconformal QFT
M9-brane/O9-planeheterotic string theory
M-wave
topological M2-branetopological M-theoryC3-field on G2-manifold
topological M5-brane\,C6-field on G2-manifold
S-brane
SM2-brane,
membrane instanton
M5-brane instanton
D3-brane instanton
solitons on M5-brane6d (2,0)-superconformal QFT
self-dual stringself-dual B-field
3-brane in 6d

References

As a fundamental brane (GS-type σ\sigma-model)

The Green-Schwarz sigma-model-type formulation of the supermembrane (as in the brane scan) first appears in

The equations of motion of the super membrane are derived via the superembedding approach in

and the Lagrangian density for the super membrane is derived via the superembedding approach in

Its quantization of the was explored in

The double dimensional reduction of the M2-brane to the Green-Schwarz superstring was observed in

The interpretation of the membrane as as an object related to string theory via double dimensional reduction, hence as the M2-brane was proposed in

around the time when M-theory became accepted due to

Regularization and relation to BFSS

The proposed regularization, due to deWit-Hoppe-Nicolai 88, of area-preserving diffeomorphisms on the membrane worldvolume by SU(N)-matrices and the resulting equivalence of the quantization of the membrane to the BFSS matrix model of D0-branes is reviewed and further dicussed in the following articles:

As a black brane

The back membrane solution of 11-dimensional supergravity was found in

Its regularity throught the event horizon is due to

The Horava-Witten-orientifold of the black M2, supposedly yielding the black heterotic string is discussed in

  • Zygmunt Lalak, André Lukas, Burt Ovrut, Soliton Solutions of M-theory on an Orbifold, Phys. Lett. B425 (1998) 59-70 (arXiv:hep-th/9709214)

  • Ken Kashima, The M2-brane Solution of Heterotic M-theory with the Gauss-Bonnet R 2R^2 terms, Prog.Theor.Phys. 105 (2001) 301-321 (arXiv:hep-th/0010286)

Meanwhile AdS-CFT duality was recognized in

where a dual description of the worldvolume theory of M2-brane appears in section 3.2. More on this is in

An account of the history as of 1999 is in

More recent review is in

  • Georgios Linardopoulos, chapter 13 of Classical Strings and Membranes in the AdS/CFT Correspondence (pdf, spire)

A detailed discussion of this black brane-realization of the M2 and its relation to AdS-CFT is in

The generalization of this to 1/2\geq 1/2 BPS sugra solutions of the form AdS 4×X 7AdS_4 \times X_7 is due to

Discussion of the history includes

Other recent developments are discussed in

Formulations of multiple M2-branes on top of each other are given by the BLG model and the ABJM model. See there for more pointers. The relation of these to the above is discussed in section 3 of

Discusson of boundary conditions in the ABJM model (for M2-branes ending on M5-branes) is in

A kind of double dimensional reduction of the ABJM model to something related to type II superstrings and D1-branes is discussed in

Discussion of the ABJM model in Horava-Witten theory and reducing to heterotic strings is in

Discussion of general phenomena of M-branes in higher geometry and generalized cohomology is in

Discussion from the point of view of Green-Schwarz action functional-∞-Wess-Zumino-Witten theory is in

Dualities

The role of and the relation to duality in string theory of the membrane is discussed in the following articles.

Relation to T-duality is discussed in:

  • J.G. Russo, T-duality in M-theory and supermembranes (arXiv:hep-th/9701188)

  • M.P. Garcia del Moral, J.M. Pena, A. Restuccia, T-duality Invariance of the Supermembrane (arXiv:1211.2434)

Relation to U-duality is discussed in:

Discussion from the point of view of E11-U-duality and current algebra is in

M2-M5 bound states

Discussion of M2-M5 brane bound states, i.e. dyonic\,black M2-branes (M5-branes wrapped on a 3-manifold, see also at NS5-branes – D2/D4/NS5-bound states):

Further bound states of M2/M5-branes to giant gravitons:

  • J. M. Camino, A. V. Ramallo, M-Theory Giant Gravitons with C field, Phys.Lett.B525:337-346,2002 (arXiv:hep-th/0110096)

Last revised on July 27, 2019 at 11:41:53. See the history of this page for a list of all contributions to it.