D=6 N=(1,0) SCFT



Algebraic Quantum Field Theory

algebraic quantum field theory (perturbative, on curved spacetimes, homotopical)



field theory:

Lagrangian field theory


quantum mechanical system, quantum probability

free field quantization

gauge theories

interacting field quantization



States and observables

Operator algebra

Local QFT

Perturbative QFT



superconformal field theory in dimension 6 with number of supersymmetries equal to 1.

Arises from


ddNNsuperconformal super Lie algebraR-symmetryblack brane worldvolume
superconformal field theory
via AdS-CFT
A3A\phantom{A}3\phantom{A}A2k+1A\phantom{A}2k+1\phantom{A}AB(k,2)\phantom{A}B(k,2) \simeq osp(2k+1|4)A(2k+1 \vert 4)\phantom{A}ASO(2k+1)A\phantom{A}SO(2k+1)\phantom{A}
A3A\phantom{A}3\phantom{A}A2kA\phantom{A}2k\phantom{A}AD(k,2)\phantom{A}D(k,2)\simeq osp(2k|4)A(2k \vert 4)\phantom{A}ASO(2k)A\phantom{A}SO(2k)\phantom{A}M2-brane
BLG model
ABJM model
A4A\phantom{A}4\phantom{A}Ak+1A\phantom{A}k+1\phantom{A}AA(3,k)𝔰𝔩(4|k+1)A\phantom{A}A(3,k)\simeq \mathfrak{sl}(4 \vert k+1)\phantom{A}AU(k+1)A\phantom{A}U(k+1)\phantom{A}D3-brane
D=4 N=4 SYM
D=4 N=2 SYM
D=4 N=1 SYM
A6A\phantom{A}6\phantom{A}AkA\phantom{A}k\phantom{A}AD(4,k)\phantom{A}D(4,k) \simeq osp(8|2k)A(8 \vert 2k)\phantom{A}ASp(k)A\phantom{A}Sp(k)\phantom{A}M5-brane
D=6 N=(2,0) SCFT
D=6 N=(1,0) SCFT

(Shnider 88, also Nahm 78, see Minwalla 98, section 4.2)



Anomaly cancellation

Discussion of anomaly cancellation and Green-Schwarz mechanism:

Lagrangian description

A class of Lagrangian densities for D=6 N=(1,0) SCFTs with non-abelian gauge group has been proposed in

reviewed in

An attempt to understand the SSW 11-models as higher gauge theories for gauge-L-infinity algebras which are variants of the string Lie 2-algebra is due to:

Geometric engineering on 5-branes

On D=6 N=(1,0) SCFTs via geometric engineering on M5-branes/NS5-branes at D-, E-type ADE-singularities, notably from M-theory on S1/G_HW times H/G_ADE, hence from orbifolds of type I' string theory (see at half NS5-brane):

KK-Compactification to D=4D=4 𝒩=1\mathcal{N} = 1 SYM

The KK-compactification specifically of the D=6 N=(1,0) SCFT to D=4 N=1 super Yang-Mills:

  • Ibrahima Bah, Christopher Beem, Nikolay Bobev, Brian Wecht, Four-Dimensional SCFTs from M5-Branes (arXiv:1203.0303)

  • Shlomo S. Razamat, Cumrun Vafa, Gabi Zafrir, 4d4d 𝒩=1\mathcal{N} = 1 from 6d(1,0)6d (1,0), J. High Energ. Phys. (2017) 2017: 64 (arXiv:1610.09178)

  • Ibrahima Bah, Amihay Hanany, Kazunobu Maruyoshi, Shlomo S. Razamat, Yuji Tachikawa, Gabi Zafrir, 4d4d 𝒩=1\mathcal{N}=1 from 6d6d 𝒩=(1,0)\mathcal{N}=(1,0) on a torus with fluxes (arXiv:1702.04740)

  • Hee-Cheol Kim, Shlomo S. Razamat, Cumrun Vafa, Gabi Zafrir, E-String Theory on Riemann Surfaces, Fortsch. Phys. (arXiv:1709.02496)

  • Hee-Cheol Kim, Shlomo S. Razamat, Cumrun Vafa, Gabi Zafrir, D-type Conformal Matter and SU/USp Quivers, JHEP06(2018)058 (arXiv:1802.00620)

  • Hee-Cheol Kim, Shlomo S. Razamat, Cumrun Vafa, Gabi Zafrir, Compactifications of ADE conformal matter on a torus, JHEP09(2018)110 (arXiv:1806.07620)

  • Shlomo S. Razamat, Gabi Zafrir, Compactification of 6d minimal SCFTs on Riemann surfaces, Phys. Rev. D 98, 066006 (2018) (arXiv:1806.09196)

  • Jin Chen, Babak Haghighat, Shuwei Liu, Marcus Sperling, 4d N=1 from 6d D-type N=(1,0) (arXiv:1907.00536)

SU(2)SU(2)-flavor symmetry on heterotic M5-branes

Emergence of SU(2) flavor-symmetry on single M5-branes in heterotic M-theory on ADE-orbifolds (in the D=6 N=(1,0) SCFT on small instantons in heterotic string theory):

Argument for this by translation under duality between M-theory and type IIA string theory to half NS5-brane/D6/D8-brane bound state systems in type I' string theory:

Reviewed in:

  • Santiago Cabrera, Amihay Hanany, Marcus Sperling, Section 2.3 of: Magnetic Quivers, Higgs Branches, and 6d 𝒩=(1,0)\mathcal{N}=(1,0) Theories, JHEP06(2019)071, JHEP07(2019)137 (arXiv:1904.12293)

The emergence of flavor in these half NS5-brane/D6/D8-brane bound state systems, due to the semi-infinite extension of the D6-branes making them act as flavor branes:

Reviewed in:

  • Fabio Apruzzi, Marco Fazzi, Section 2.1 of: AdS 7/CFT 6AdS_7/CFT_6 with orientifolds, J. High Energ. Phys. (2018) 2018: 124 (arXiv:1712.03235)

See also:

Last revised on November 15, 2020 at 09:39:10. See the history of this page for a list of all contributions to it.