nLab
M2-brane

Contents

Idea

The theory of 11-dimensional supergravity contains a higher gauge field – the supergravity C-field – that naturally couples to higher electrically charged 2-branes (membranes). By a process called double dimensional reduction, these are related to superstrings (Bergshoeff-Sezgin-Townsend 87).

When in (Witten95) it was argued that the 10-dimensional target space theories of the five types of superstring theories are all limiting cases of one single 11-dimensional target space theory that extends 11-dimensional supergravity (M-theory), it was natural to guess that this supergravity membrane accordingly yields a 3-dimensional sigma-model that reduces in limiting cases to the string sigma-models.

But there were two aspects that make this idea a little subtle, even at this vague level: first, there is no good theory of the quantization of the membrane sigma-model, as opposed to the well understood quantum string. Secondly, Secondly, that hypothetical “theory extending 11-dimensional supergravity” (“M-theory”) has remained elusive enough that it is not clear in which sense the membrane would relate to it in a way analogous to how the string relates to its target space theories (which is fairly well understood).

Later, with the BFSS matrix model some people gained more confidence in the idea, by identifying the corresponding degrees of freedom in a special case (Nicolai-Helling 98).

In a more modern perspective, the M2-brane worldvolume theory appears under AdS4-CFT3 duality as a holographic dual of a 4-dimensional Chern-Simons theory. Indeed, its Green-Schwarz action functional is entirely controled by the super-Lie algebra 4-cocycle of super Minkowski spacetime given by the brane scan. This exhibits the M2-brane worldvolume theory as a 3-dimensional higher WZW model?.

Properties

M2-branes at orbifold fixed points – BLG and ABJM

In some situations stacks of M2-branes are accurately described by ABJM theory of the BLG model.

AdS4-CFT3 duality

Under AdS-CFT duality the M2-brane is given by AdS4-CFT3 duality. (Maldacena 97, section 3.2, Klebanov-Torri 10).

Table of branes appearing in supergravity/string theory (for classification see at brane scan).

branein supergravitycharged under gauge fieldhas worldvolume theory
black branesupergravityhigher gauge fieldSCFT
D-branetype IIRR-fieldsuper Yang-Mills theory
(D=2n)(D = 2n)type IIA\,\,
D0-brane\,\,BFSS matrix model
D2-brane\,\,\,
D4-brane\,\,D=5 super Yang-Mills theory with Khovanov homology observables
D6-brane\,\,
D8-brane\,\,
(D=2n+1)(D = 2n+1)type IIB\,\,
D1-brane\,\,2d CFT with BH entropy
D3-brane\,\,N=4 D=4 super Yang-Mills theory
D5-brane\,\,\,
D7-brane\,\,\,
D9-brane\,\,\,
(p,q)-string\,\,\,
(D25-brane)(bosonic string theory)
NS-branetype I, II, heteroticcircle n-connection\,
string\,B2-field2d SCFT
NS5-brane\,B6-fieldlittle string theory
M-brane11D SuGra/M-theorycircle n-connection\,
M2-brane\,C3-fieldABJM theory, BLG model
M5-brane\,C6-field6d (2,0)-superconformal QFT
M9-brane/O9-planeheterotic string theory
topological M2-branetopological M-theoryC3-field on G2-manifold
topological M5-brane\,C6-field on G2-manifold
solitons on M5-brane6d (2,0)-superconformal QFT
self-dual stringself-dual B-field
3-brane in 6d

References

General

Early speculations trying to model the electron by a relativistic membrane are due to Paul Dirac:

  • Paul Dirac, An Extensible Model of the Electron, Proc. Roy. Soc. A268, (1962) 57-67.

  • Paul Dirac, Motion of an Extended Particle in the Gravita- tional Field, in Relativistic Theories of Gravitation, Proceedings of a Conference held in Warsaw and Jablonna, July 1962, ed. L. Infeld, P. W. N. Publishers, 1964, Warsaw, 163-171; discussion 171-175

  • Paul Dirac, Particles of Finite Size in the Gravitational Field, Proc. Roy. Soc. A270, (1962) 354-356.

The Green-Schwarz sigma-model-type formulation of the supermembrane (as in the brane scan) appears in

and its quantization was first explored in

  • B. de Wit, Jens Hoppe, Hermann Nicolai, On the Quantum Mechanics of Supermembranes, Nucl. Phys. B305 (1988) 545.

  • B. de Wit, W. Lüscher, Hermann Nicolai, The supermembrane is unstable, Nucl. Phys. B320 (1989) 135.

The interpretation of the membrane as as an object related to string theory, hence as the M2-brane was proposed in

around the time when M-theory was envisioned in

The interpretation of the M2-brane worldvolume theory as realted to the matrix model of D0-branes is discussed in some detail in

  • Hermann Nicolai, Robert Helling, Supermembranes and M(atrix) Theory, Lectures given by H. Nicolai at the Trieste Spring School on Non-Perturbative Aspects of String Theory and Supersymmetric Gauge Theories, 23 - 31 March 1998 (arXiv:hep-th/9809103)

  • Arundhati Dasgupta, Hermann Nicolai, Jan Plefka, An Introduction to the Quantum Supermembrane, Grav.Cosmol.8:1,2002; Rev.Mex.Fis.49S1:1-10, 2003 (arXiv:hep-th/0201182)

Meanwhile AdS-CFT duality was recognized in

where a dual description of the worldvolume theory of M2-brane appears in seciton 3.2. More on this is in

Other recent developments are discussed in

Formulations of multiple M2-branes on top of each other are given by the BLG model and the ABJM model. See there for more pointers. The relation of these to the above is discussed in section 3 of

Discussion of general phenomena of M-branes in higher geometry and generalized cohomology is in

Discussion from the point of view of Green-Schwarz action functional-∞-Wess-Zumino-Witten theory is in

Dualities

The role of and the relation to duality in string theory of the membrane is discussed in the following articles.

Relation to T-duality:

  • J.G. Russo, T-duality in M-theory and supermembranes (arXiv:hep-th/9701188)

  • M.P. Garcia del Moral, J.M. Pena, A. Restuccia, T-duality Invariance of the Supermembrane (arXiv:1211.2434)

Relation to U-duality:

Revised on December 11, 2013 07:30:09 by Urs Schreiber (89.204.130.40)