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We study the quantum-mechanical properties of a supermembranc and examine the nature of 
its ground state. A supersymmetric gauge theory of area-preserving transformations provides a 
convenient framework for this study. The supermembrane can be viewed as a limiting case of a 
class of models in supersymmetric quantum mechanics. Its mass does not depend on the zero 
modes and vanishes only if the wave function is a singlet under supersymmetry transformations of 
the nonzero modes. We exhibit the complexity of the supermembrane ground state and examine 
various truncations of these models. None of these truncations has masstess states. 

1. Introduction 

Some time ago an action for a membrane moving in a d-dimensional space-time 
was formulated, which is invariant under super-Poincar6 transformations [1]. It is 
expressed in terms of the membrane coordinates X~'(~) and a set of anticommuting 
coordinates 0(~), transforming as a d-dimensional vector and spinor, respectively; 
the parameters ~-i (i = 0,1,2) parametrize the world tube swept out by the mem- 
brane in space-time. As is well-known, similar actions exist for the superparticle, the 
superstring, as well as higher-extended objects ("p-branes") [1 4], and they are all 
characterized by the presence of a local (i.e., ~'-dependent) fermionic symmetry. This 
invariance requires the existence of a closed superspace form [5], appearing in the 
action in the form of a Wess-Zumino-Witten term, which is only possible for a 
specific number of space-time dimensions. Therefore, the supermembrane action 
can only be formulated in d = 4, 5, 7 and 11 dimensional space-times. 

An intriguing result found in [1] is that a supermembrane can propagate in a 
curved superspace. In particular for d = 11, the membrane can couple consistently 
(i.e., without affecting the local fermionic symmetry) to a d =  11 supergravity 
background. Guided by the experience in string theory this result has been inter- 
preted as an indication that the ground state of the supermembrane should be 
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degenerate and constitute the states of a massless d = 11 supergravity multiplet. In 
at tempts to study this question the quantum fluctuations have been analyzed about 
solutions of the classical membrane equations [6, 7]. While the vacuum energy of 
these fluctuations vanishes for the solution considered in [6], it did not vanish for 
the solution described in [7], and neither did it constitute an integer as it does in the 
case of the string [8] (for the (open) bosonic membrane such a calculation was first 
undertaken in [9]). On the other hand, heuristic arguments were presented in [10], 
based on the vanishing of the vacuum energy for fluctuations about a solution with 
residual supersymmetry, which support the conjecture that the ground state has the 
structure of a massless d = 11 supermultiplet. 

In this paper  we will study the quantum mechanics of a supermembrane in more 
detail in the hope of constructing the ground-state wave function. We present an 
alternative formulation of the membrane as a gauge theory of the area-preserving 
transformations of the membrane surface. Here we are inspired by the fact that 
these transformations are the residual invariance of a relativistic membrane theory 
when quantized in the light-cone gauge [11]. It is possible to consider truncations of 
this gauge theory by truncating the infinite harmonic expansion of the membrane 
coordinates. At least for membranes with the topology of a sphere this can be done 
in such a way that the supersymmetry remains preserved. The group of area-preserv- 
ing transformations is thereby reduced to SU(N).*  These truncations lead to a class 
of matrix models in supersymmetric quantum mechanics [13,14], which turn out to 
coincide with the models that have been presented in [15]. A priori, three different 
types of membrane  ground states are possible. One possibility is that the ground 
state is a singlet under supersymmetry, which is thus annihilated by the supersym- 
metry charges. By virtue of the anticommutation relation which expresses the 
hamiltonian as the square of these charges, this ground state should be massless. 
However, this situation is not possible for the supermembrane: it follows from the 
explicit expression for the hamiltonian that all wave functions have an obvious 
degeneracy associated with the fermionic zero modes. Therefore the ground state 
must  be degenerate and constitute a supermultiplet. There are then two possibilities. 
One is that the ground state is a massless supermultiplet, consisting of 27 bosonic 
and 2 7 fermionic states, in which case the supercharges associated with the nonzero 
modes must annihilate the ground-state wave functions. If this is not the case one 
has a massive supermultiplet. The ground-state degeneracy is then enormous, as a 
massive supermultiplet contains 215 bosonic and 215 fermionic states. 

We restrict ourselves to supermembranes that move in a trivial space-time. Hence 
we consider no compactification as in [6] and neither do we study the possibility of 
membranes  moving in nontrivial space-times such as in [16]. This means, in 
particular, that our considerations have no bearing on the results described in [16], 

* This idea goes back to Goldstone [11]. The relation between SU(N) and the group of area-preservin8 
transformations was exhibited in [12]. 
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where the existence of infinitely many massless states of the supermembrane 
compactified to AdS 4 × S 7 was demonstrated in a small-fluctuation analysis. Our 
work shows that the ground-state wave function of a supermembrane has a high 
degree of complexity. For instance, it is not possible for a massless ground state that 
the wave function factorizes into a bosonic and a fermionic part, if one of these 
factors is rotationally invariant. This is a distinct difference with the wave function 
for the superstring ground state. We then study the restrictions imposed by 
rotational invariance for the total ground-state wave function, but, unfortunately, 
this does not lead to useful simplifications. Although the condition that the wave 
function vanishes under the action of the supersymmetry charges has solutions, 
these solutions tend to be not square-integrable. This we demonstrate in a G 2- 
invariant truncation of the theory. We also consider a supermembrane propagating 
in a 4-dimensional space-time in a truncation where the group of area-preserving 
transformations is reduced to SU(2). Assuming that the wave function tends to zero 
at spatial infinity, we show that the energy of the supermembrane is lower than that 
of its bosonic version, but there is no solution with zero mass. However, the 
complexity of this problem makes it hard to reach a firm conclusion concerning the 
existence of massless solutions in the general case. We should also emphasize that, 
while the supersymmetric matrix models are well defined, it is not clear what will 
happen in the limit where the gauge group approaches the full infinite-dimensional 
group of area-preserving transformations. As is well-known, in quantum-mechanical 
systems based on an infinite number of degrees of freedom, degenerate ground 
states are not always contained in the same Hilbert space; this aspect is of 
immediate importance for possible applications of supermembrane theories. Also, 
while the models based on SU(N)  yield, in the limit N ~ ~ ,  the full group of 
area-preserving transformations corresponding to a membrane with the topology of 
a sphere, a corresponding result for other membrane topologies is not known. 

In sect. 2 we start by formulating the membrane action in the light-cone gauge, 
emphasizing the role played by the area-preserving transformations. We introduce a 
gauge theory of these transformations, and verify the supersymmetry algebra. In 
sect. 3 we review the truncation to the finite-dimensional matrix models and discuss 
some properties of area-preserving transformations. Then, in sect. 4, we discuss 
at tempts  to solve the equations for the ground-state wave function of the supermem- 
brane and demonstrate the absence of a massless ground state in two different 
truncations. In an appendix we analyze the implications of SO(9) invariance for a 
general wave function. 

2. Lightcone formulation of the supermembrane 

The starting point of this section is the lagrangian 

- x,  o ) -eJ [lO,x (ojx + or ojo) +  Or oioOr ojo ] Org o, (2.1) 
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where X"(f )  and 0(~) denote the superspace coordinates of the membrane 
parametrized in terms of world-tube parameters fi (i = 0,1, 2). The metric ggj(X, 0) 
is the induced metric on the world tube, 

p. v gij Ei E} ~0~, (2.2) 

where E r are certain supervielbein components tangential to the world tube, 
defined by 

El' = O,X ~ + Oruo,O, (2.3) 

and ~,,  is the flat d = 11 Minkowski metric. It is easy to see that E r is invariant 
under space-time supersymmetry transformations 

30 = ~, 8 X  ~ = - ~F"O. (2.4) 

In fact this transformation also leaves the lagrangian (2.1) invariant (up to a total 
divergence) provided the following gamma matrix identity is satisfied 

7e 1 r% 3r.o 41 = o, (2.5) 

where we antisymmetrize over four arbitrary spinors ~bl-~b 4. This identity only holds 
in d =  4, 5, 7 and 11 space-time dimensions. In this paper we mainly restrict 
ourselves to d =  11, but this restriction is not important for the analysis to be 
presented below. 

The field equations corresponding to the lagrangian (2.1) take the form 

where F is defined by 

a, or. o o=o, 

(1 + F)giJE~ojO = O, 

(2.6) 

(2.7) 

Eijk 

F -  6 f ~  E~EfE;Fu~°" (2.8) 

We note two important identities for F, 

EJ kl 

1 "2 = 1, FEi = t~iF = gij 2 ~ f 7  7 E~E[F , , .  (2.9) 

The lagrangian (2.1) is manifestly invariant under reparametrizations of the 
world-tube coordinates ~. It is also invariant under a local fermionic symmetry 
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generated by 

O = ( 1 -  r ) ~ ,  a x  ~= ~ ( 1 -  r ) r , o ,  (2.10) 

where ~ is an arbitrary f-dependent spinor. Observe that K is always multiplied by 
the projection operator (1 - iP). 

Of particular importance is the supersymmetry current associated with the 
transformations (2.4). It reads 

s '  = - 2 f Tg"e,o 

-eJ*{ ej'e;rj+ 4[r,o(0r,,ojo)+ r,,o(or%o)][e;- or,oko] }. (2.11) 

As one can verify straightforwardly, this current is conserved by virtue of the field 
equations (2.6) and (2.7), provided the identity (2.5) holds. 

In order to pass to the light-cone gauge we choose light-cone coordinates 

X +-= ~ (  X l° +_ X ° ) .  (2.12) 

Transverse coordinates will be denoted by Xa(f) (a = 1 . . . . .  9). For the gamma 
matrices we make a similar decomposition, 

V+= ~ ( r ' ° + _  r ° ) ,  Va= r , ,  (a = 1 , . . . , 9 ) ,  (2.13) 

so that {y+, y_} = 21, 72= ,/2= 0, {7_+, 3'<,) = 0. Furthermore we change notation 
and denote the parameters f '  by 

( f O , ~ r ) ~ ( r ,  or) ,  ( r =  1,2).  (2.14) 

By a suitable reparametrization we now choose 

X+(~) = X+(0) + r ,  (2.15) 

so that 8~X += 8 m. Furthermore we use the local fermionic symmetry to impose the 
gauge condition 

7+0 = 0. (2.16) 

With these gauge conditions we obtain the following result for the components o£ 
the induced metric 

gr~ - ff, r.~ = O~X. OsX, 

gor = u r= c3rX- + c3oX. c3rX + Oy 3rO, 

go0 = 200X-+ (OoX) 2 + 20y-0o0,  (2.17) 
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while the determinant of the metric can now be written as 

g -- det g = - A ~ ,  (2.18) 

where 

A = - goo + -rs = U r g  Us ~ --rs g g,, 87, ~ - d e t o ~ .  (2.19) 

After imposing the gauge conditions (2.15) and (2.16) the lagrangian and super- 
charge densities take the form (using eor,= _ ers, g00= _ k - l ,  g0r= k-l~,rSu,) 

rs a - -  (2.20) 

J ° = 2  [(OoXa-ur~,~O,X~)7~+7_]o+er 'o~xao,Xby~hO.  (2.21) 

In order to write down the corresponding hamiltonian density, we first determine 
the canonical momenta P, P+ and S conjugate to X, X- and 0, respectively. They 
a r e  

v= O(OoX) (OoX- 

p + -  
a(a0x-) 

S -  OL( OO~ ) - - - -  y O, (2.22) 

where 0 L denotes the left derivative. The hamiltonian density then takes the simple 
form 

~ -  p .  OoX + P+ OoX + SOoO - ~ 

p 2 + ~  

2p + 
rs a ~  e OrX 07_'yaOsO. (2.23) 

The bosonic part of this expression was first found by Goldstone [11] (see also [12]), 
while its superextension was derived in [17]. 

One easily verifies that there are two primary constraints 

dpr = P .  O r X  + P +  O r X - +  SOrO ~ O ,  (2.24) 

X= S + P+7_O -~ O, (2.25) 



B. de Wit et al. / Superrnembranes 551 

where = 0 indicates that the constraints are "weakly zero", so that they may have 
nonzero Poisson brackets with the phase-space variables. We recall that the time 
(i.e., ~') evolution in phase space is governed by the " total"  hamiltonian [18]) 

(2.26) 

where c r and d are Lagrange multipliers. One can easily verify that there are no 
secondary constraints at this point. 

The gauge conditions (2.15) and (2.16) are still invariant under r-dependent 
reparametrizations of o r 

or ...+ or .~_ ~r( Y, ° ). (2.27) 

Under such infinitesimal reparametrizations ~/r changes into u r -  30~rAi - Os~rU s -  

~SOsur, which shows that one can impose yet another gauge condition, namely 

U r =  O. (2 .28)  

In this gauge it follows that c r = 0 according to the Hamilton equations correspond- 
ing to (2.26), so that O0P+=0. Because P+ transforms as a density under 
reparametrizations, it may be adjusted to a constant times some density w(o), 

P + = P ~ w ( a ) ,  (2.29) 

where we will normalize w(a) according to 

f d2o w(a) = 1. (2.30) 

Therefore the constant P0 + represents the membrane momentum in the direction 
associated with the coordinate X-, 

.o0+= f d 2 o P  + . (2.31) 

The other momentum components are given by the integrals over P and - i f ,  

e 0 = f d 2 o e ,  t'o = -fd2o . (2.32) 

Hence the mass Jg  of the membrane is given by 

"~t'2 = f dZa { [P2] '  + g" w 2P~ers OrX O]l ]taOsO , (2.33) 
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where the notation [p2], indicates that we are excluding the zero mode P = Pow(o)  

from the integrand. On the other hand, we observe that the zero modes X 0 and 00, 
defined by 

Xo:fd2ow(,,)x, Oo= fd2ow(o)O, (2.34) 

do not appear in the equation for dg 2 either, at least if the membrane coordinates 
are single-valued functions of o r, which is the case if space-time is not compactified, 
or, for open membranes, if one assumes appropriate boundary conditions. The 
absence of X 0, which is just the center-of-mass coordinate of the membrane, is 
rather obvious. The fact that j~2 does not depend on 00 will play an extremely 
important role later on. 

The coordinate X no longer appears explicitly in (2.33) and is determined by the 
gauge condition (2.28), or, equivalently, by the constraint (2.24) after imposing the 
gauge condition (2.29). The relevant formula is 

OrX = - OoX. 3 ~ X -  0 7 _ 0  f l .  (2.35) 

Because X-  must be a globally defined function of o r this requires that 

~( ~0 x"  Or x ~- O'~_OrO ) dor= o (2.36) 

for any closed curve on the membrane. Locally this condition implies 

~"(OrOoX" OsX+ Oily OsO) = 0 .  (2.37) 

Observe that, when space-time is not compactified so that X and 0 are single-val- 
ued functions of o, only the condition (2.37) is relevant. 

The gauge conditions adopted above leave a residual reparametrization invariance 
consisting of time-independent area-preserving transformations. Infinitesimal trans- 
formations of this kind leave (2.29) invariant, and are thus defined by 

or--, ar + ~r(o) with O r ( w ( o ) U ( o ) )  = 0 .  (2.38) 

There exists an alternative formulation of the membrane theory, which empha- 
sizes area-preserving reparametrizations from the start. Locally the area-preserving 
transformations can be written as 

U ( o )  = - - 0 , ~ ( o ) .  (2.39) 

If the membrane is topologically nontrivial, i.e. if the membrane surface has handles 
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so that it contains uncontractible curves, then ~r(o) and ~(o) will not necessarily be 
globally defined. However, we will restrict ourselves to the subgroup generated by 
functions ~(a) that are globally defined. It is then convenient to introduce a Lie 
bracket of any two functions A(o)  and B(o)  by 

~rs 

{A,  B}  -- w(o)  a rA( ° )O~B(° ) '  (2.40) 

which is antisymmetric in A and B and satisfies the Jacobi identity { A, { B, C } } + 
{ B, { C, A } } + { C, { A, B } } = 0. Using this bracket, infinitesimal area-preserving 
reparametrizations act on X a and 0 according to 

axa= x°}, 

Now let us introduce a gauge field 
reparametrizations, transforming as 

80=  {~,O}. (2.41) 

0o associated with time-dependent 

80o = 004 + { 4, 0o }, (2.42) 

and corresponding covariant derivatives 

Do Xa = Oo X" - { 0o, X" },  1)o0 = 0o0 - { 0o, 0 }. (2.43) 

The following lagrangian density is then manifestly gauge invariant under the 
transformations (2.41) and (2.42), 

w I~=½(DoX)2+Oy  D o O - ~ ( { X a ,  Xb})2+OV_va{Xa,  O}, (2.44) 

as well as under space-time supersymmetry transformations given by 

6 X ~ = -2~ya0,  

80 = ~v + ( DoX°vo + r -  )e + ¼ { X °, Xb } Y + Vobe 

60o = -2~0 .  (2.45) 

The supercharge density associated with the transformations (2.45), equals 

j 0 = w [ 2 ( D o X , . f  .+~'  ) +  (Xo, X h}~'.b]o. (2.46) 

In the gauge 0o = 0 the latter result coincides with the charge density obtained 
previously (cf. (2.21) after imposing the gauge conditions (2.28) and (2.29)). To see 
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that the supersymmetry transformations are associated with space-time, one may 
evaluate the supersymmetry commutator on xa: 

[ 3 ( e l ) , 3 ( e z ) ] X  ~= --2~2Y+el DoX~-  2~2Y%1 + {~, X~}, (2.47) 

where, on the right-hand side, we distinguish a r-translation generated by D o 
(which, as we know, is related to a translation of the membrane coordinate X+), a 
translation of X ° and an X-dependent area-preserving gauge transformation with 
parameter 4 = 2~2'yb2I+81Xb. In order to verify that the bosonic and fermionic 
degrees of freedom balance in the path integral associated with (2.44), one may 
impose a gauge condition to = 0, which leads to a (free) fermionic complex ghost 
field. Altogether one then counts 9 bosonic and 16 + 2 = 18 (real) fermionic field 
components. 

To establish full equivalence of (2.44) with the membrane lagrangian, we imple- 
ment the gauge to = 0 and introduce canonical momenta P and S associated with X 
and 0, 

P = w O o X ,  S = - w 7  0 .  (2.48) 

The hamiltonian is then 

fd2, {e. aoX +  aoO-W } 

1 
=  fd=o{w-le2+ lw(( xo, 2-  2wO'V_¥a { xa, O}), (2.49) 

so that, after dropping the zero-mode P0, 2H  coincides with eq. (2.33) for the 
membrane mass J / ,  provided 0 is rescaled by a factor P~0 + (to make the compari- 
son, use that ({X ~, Xb}) 2= 2w 2~). 

Furthermore, the field equation for to leads to the constraint 

+--- { aoX,.X} + ( o v : , o }  - o ,  (2.50) 

or, in phase-space variables, 

(2.51) 

This constraint is just (2.37), and we have thus established the equivalence of (2.44) 
with the initial lagrangian (2.1). The quantity qo is the "current" that couples to the 
gauge field to, so it is obvious that wrp represents the charge density associated with 
the area-preserving transformations. In addition there is the usual second-class 
constraint that expresses the ferrnionic momentum S into 0. 
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The Dirac brackets for the theory above are derived by standard methods and 
read 

(xa (o ) ,  pb(o,))DB = 3ab 32(o _ o'),  

1 
(0~(o), 0a(o'))D, = ~ww ( y + ) ~  32(o -- o'). (2.52) 

It is now possible to verify the full d = 11 supersymmetry algebra. Decomposing the 
supersymmetry charges into two independent SO(9) spinors according to 

= Q++ Q-= fd~oJ °, (2.53) Q 

where jo  is given in (2.46) and Q-+- ~y+y:~Q, we find the expressions 

Q+= fd2o  (2P%,~ + w{ X ~, Xb}Y,,b)O, 

Q - =  -2f d2oS = 2,/_00 . (2.54) 

Observe that Q- acts only on the fermionic zero-modes 0o, which, as we have 
pointed out before, do not appear in the expressions for the hamiltonian and the 
membrane mass. 

It is now a straightforward exercise to determine the Dirac brackets for the 
supercharges. The result takes the following form 

(Q~, Q/7)D, = - 2(y_) ~/~, 

(Q+, Q/~)DU = 2(V+ )~BH- 2(y~V +)o~f d 2 o w ~ X  a 

+ ( f d2o cgrSra + ( y,,acay+ ) o d  d2o OrSrbcd ' 

(Q+, Qd)on = - (v~v+v_) °aP0~ + (v"~v+v)°afd2oOrSrab, (2.55) 

where the surface terms, given by 

aXb ~ , S ' = e " { 2 w - X X a P 6 o q ,  X b +  2 X a O y  a s O -  s as(  "g-Y~,bO)} 

<bedr ----~,F.1 . . . .  A[ a as ( 0"]1 ~l bed] e ) ,  

grab 1 rs ~T = - ~ e  a[~ O~Xbl, (2.56) 
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can contribute only if the membrane coordinates and momenta  are not single-val- 
ued. 

It  is useful to separately consider the zero-mode contributions to Q+, which 
define a conserved charge Q+{0). It reads 

Q+(0) = 2P0~7~00" (2.57) 

Together, Q+(0} and Q -  generate the algebra 

(Q~-' ~};)DB = - 2 (7_)~a ,  

( o :  (°), O;  (°))o. = ( 7 + ) j o  ~ , 

P# ( o :  ~°), -O; )D. = - ( r o t  + r_ )o~ o,  (2.5s) 

where we have used that the hamiltonian for the zero modes is the center-of-mass 
hamiltonian H (°) 1 2 = 5P6. For the remainder of the supercharge Q+, which does not 
contain the zero modes anymore (provided that the membrane coordinates are 
single-valued), the Dirac bracket reads 

- - ÷  
( Q : , O ~ ) o , = ( ~ + ) o J 2 - 2 ( ~ o T + ) o ~ f d 2 o w ,  XO+ . . ,  (2.59) 

where the dots indicate the contribution from the surface terms. This relation plays 
a central role in the analysis of this paper. 

So far we have been employing a d = 11 notation for the spinors 0. However, due 
to the gauge condition (2.16), the anticommuting coordinates are restricted to SO(9) 
spinors, satisfying 

7172 " '"  "/90 = O. (2.60) 

Furthermore we have 

07_ = iv~O*, 0 = c~10 ' ,  (2.61) 

where c~ is the d = 9 charge conjugation matrix, which is symmetric and related to 
the d = 11 charge conjugation matrix by (~= -C711; we also note that the SO(9) 
gamma matrices satisfy 7 f = c~7,T-1. Henceforth we will choose c~= 1, so that the 
SO(9) gamma matrices are symmetric. 

In subsequent sections we shall study the ground-state wave function of the 
supermembrane.  For that purpose it is convenient to have an explicit representation 
for the operators associated with the fermionic coordinates. As a first step towards 
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constructing such a representation we decompose the real SO(9) spinor coordinates 
0 into a single complex 8-component spinor X, which transforms linearly under the 
SO(7) x U(1) subgroup of SO(9). This decomposition is effected by expressing the 
two eigenspinors of "/9, defined by "/9 0( -+ ) : -+ 0( + ), into a complex SO(7) spinor X, 
according to 

~,t + ~, ~,t _ ~, 

0 (+) = 2s/----- a- , 0 ( )=  i 2 s / ~  (2.62) 

The bosonic coordinates X" are then decomposed according to representations of 
this SO(7) x U(1) subgroup so we distinguish the components X i of an SO(7) vector 
(i = 1, 2 , . . . ,  7), while X 8 and X 9 are combined into a complex coordinate 

Z = ~ ( X  8 + ixg), (2.63) 

which transforms under U(1). Similarly, the momenta are decomposed in terms of 
an SO(7) vector pi  and a complex momentum ~a defined by 

1 p8 ,¢~ = ~!-~! ( - i P  9 ) (2.64) 

The normalization factors in (2.62)-(2.64) are chosen such that the nonvanishing 
Dirac brackets are equal to 

(x ' (o) ,  p~(o'))D,, = a"8~(o - 09, 

(z( , , ) ,  ~(,,'))D,, = 4 2 ( o  - ,, '), 

(xo(,,), VB(,,'))D,,=-;w (2.65) 

The supercharges Q~ can also be written as a complex SO(7) spinor. When 
expressed in terms of the above coordinates these charges take the form 

Q= fd2o[(P'~+ ½w{ Xi, X"}~j . -w{Z,Z})X 

2}<)v], 

Q*= fd2o[(-P'< + {w{ X', X"}g, + w{ z, 2})a* 

+v~(-iJ~+iw{Xi, Z}I])X], (2.66) 
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where F/ are the SO(7) gamma matrices*. In the same notation the hamiltonian 

reads 

. =  f 

+iwkF~{ X~,k t } - ½~/2wA{ Z , k  } + }v~-wk*{ 2,~,* }] . (2.67) 

The normalization of Q and Q* is such that 

= - d 2 o  w2~, 

(Q , ,  Q~)D, = -2iBm#H+ 2i(r~)~afdZowX'w. (2.68) 

(Q~, Q#)tm 

3. Area-preserving transformations and supersymmetric matrix models 

The analysis presented in the foregoing section has led us to the constraint (2,24) 
(or, (2.35)-(2.37) and (2.50-51)), which generates the group G of area-preserving 
diffeomorphisms. All physical quantities, such as the expression (2.33) for the 
membrane  mass, must be invariant under this group, and this statement applies 
equally to the classical theory (where (2.24) constrains the space of solutions) and to 
the quantum theory (where (2.24) must be imposed as a constraint on the physical 
states). The group G and its associated Lie algebra play an important role in the 
following and are also of interest in their own right [11,12]. In this section, we 
summarize some properties of this group for spherical and toroidal membranes. 
Before going into the details we make some general remarks which also pertain to 
topologically more complicated membranes. We start by expanding the coordinates 
into a complete orthonormal basis of functions YA(o) on the membrane, 

X(o) : ]F_~X~YA(o), (A = 0 , 1 , 2  . . . .  ) (3.1)  
A 

and likewise for the fermionic coordinates 0 (or 2,) and the momenta.  The functions 
YA may be chosen real, in which case there are no restrictions on the modes, or 
complex, in which case there are further restrictions from the reality of X. The 
following notation allows us to discuss both options in a uniform manner. First we 

* Our conventions are as follows: { ~, ~ } = 2~,jl, I~j ~ ~[/],, ~], I~jk --- -~ {~, ~k }, 11.../'7 = i l. 
Also, F, = F,* = - ~T = _ F/*. 
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define 

y~(~)-  (y~(o)), = , A % ( . ) ,  (3.2) 

where the matrix ~AB satisfies AB ~8C---- 8C A with ~A~ = (~}AB),. The normalization 
of the functions YA is 

f d 2 o w ( o ) Y A ( o ) Y ~ ( o )  = 8 A ' (3.3a) 

or, equivalently, 

fd2o w(o)Y~(o) Y~(o) = n~,  (3.3b) 

which shows that ~Ae is symmetric. The reality condition on the expansion 
coefficients of X(o)  then reads 

x ~  - ( X A )  * = ~ABX ~. (3.4) 

Furthermore, completeness of the YA implies 

E Y~(o)yA(o ,) - w(o)~2(o- 0,). (3.5) 
A 

As explained in the previous section, area-preserving maps are expressed in terms 
of divergence-free vector fields, ~r(o); according to (2.39) these vector fields can be 
represented locally in terms of a scalar function ~(o), which may or may not be 
globally defined.* We will concentrate on the subgroup of area-preserving maps 
generated by functions ~(a) that are globally defined. As follows from (2.41), 
infinitesimal transformations can be expressed in terms of the Lie bracket defined in 
(2.40). Furthermore, the commutator of two infinitesimal transformations with 
parameters ~1 and ~2 yields an area-preserving transformation with parameter 
~3 = (~2, ~1 }" Therefore the structure constants of the area-preserving maps that are 
globally defined, are given in terms of the Lie bracket (2.40). In order to make this 
more explicit, we decompose the Lie bracket of YA and Y8 according to 

{ YA, Ye} = gABCyc = gA~C Yc ,  (3.6) 

where indices of gABC are raised and lowered by means of ~/AB and ~/As- Using the 

* In the mathematics  literature, the vector fields corresponding to functions ~(o) that are globally 
defined, are called "hamil tonian vector fields"; if ~(o) is not globally defined one speaks of "locally 
hamil tonian vector fields". See e.g. [19], p. 218. The latter contain harmonic vectors ~r and 
homotopically nontrivial reparametrizations. 
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normalization condition (3.3) it follows that gABC is defined by 

g ~  = f d2o w(o )  YA(o) { Y~(o), Yc(o)} 

= f d 2 o ~ ' s ~ ( o ) O # ~ ( o ) O # c ( o ) .  (3.7) 

Because the Lie bracket satisfies the Jacobi identity the structure constants will also 
satisfy this identity, 

g t ~  (g ~ E  = 0. (3.8) 

In the space of functions that are globally defined, it follows directly from the 
definition (3.7) that the structure constants gABC are totally antisymmetric. As we 
will not consider compactified membranes, we will thus always be dealing with 
antisymmetric structure constants. Furthermore the zero-mode Y0(o)= constant 
decouples from the other modes because 

gOBC = gAOC = gABO = O. (3.9) 

It is now straightforward to substitute the expansion (3.1) and similar ones for the 
fermionic coordinates into the expressions derived in sect. 2. The lagrangian 
corresponding to (2.44) thus reads 

i~ = ~( OoX°) ~ + ~lVoX~l ~ + 0% OoO ° + O~v DoO ~ 

(3.1o) 

where we have separately written the zero modes (corresponding to A = 0) and the 
nonzero modes with indices A, B . . . .  ranging from 1 to oc. The covariant deriva- 
tives in (3.10) are defined by 

DoX2 = a o X 2 -  ~ B.:c ~ . . c  gBC ¢~ Aa , Do OA = Oo OA - gBc  ~o u , (3.11) 

where ~0 A is the gauge field associated with time-dependent area-preserving trans- 
formations. The lagrangian (3.10) is invariant under time-dependent transforma- 
tions, whose infinitesimal form is given by 

8 ~ = gBCA~SX c ,  80 ~ = gBcA~80 c 8~0 A Do~ A (3.12) 

so that the zero modes are invariant by virtue of (3.9) and the nonzero modes 
transform in the adjo in t  representation. 
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As in sect. 2, the hamiltonian associated with (3.10) in the gauge ~A = 0 leads to 
an equation for the membrane mass rid, 

1 E - v A v B v C v D  ./1[2 = PA" p A  jr YgAB gCDEAa Ab Aa  ab  + 2gA,cXJ OCT Y "OC, ( 3 . 1 3 )  

which does not contain the zero modes. The relevant supercharge is the part  of Q +, 
defined in (2.54), that pertains to the nonzero modes, 

O = ( 2 e l y  a + gecA ai, a ,,c y ~,e~j,A. '~ (3.14) 

As shown in (2.59) the Dirac bracket of Q with itself yields (3.13) and the constraint 
% whose components are 

• A = g A B c ( e  B X C + 0 % 0  C) = O. (3.15) 

The theory defined by (3.13)-(3.15) contains an infinite number of degrees of 
freedom. In order to make it well-defined, one would like to have some kind of 
regularization. This can be achieved by restricting the indices A, B, C . . . .  to a finite 
range between I and some finite number A. The original theory would then be 
obtained in the limit A --+ 0o. In general, this limiting procedure may destroy some 
of the symmetries of the theory, and it is not clear which of these will be restored in 
this limit. The most severe of these problems are cured if one can replace the full 
group G of area-preserving transformations by a finite-dimensional symmetry group 
GA, which in the limit A ~ 0o coincides with G. The structure constant gAeC can 
then be replaced by the structure constants fast" of the finite-dimensional group 

G A, which satisfy 

lira fA~c = gABC. (3.16) 
A~oo 

The existence of such a group GA guarantees that supersymmetry is not affected, as 
this symmetry rests upon the existence of a Jacobi identity for the structure 
constants (it also depends on the space-time dimension through the condition (2.5)). 
The application of this regularization thus leads us to a class of N = 16 supersym- 
metric matrix models with hamiltonian 

H =  Tr( e  +  [xo, xb] 2 + [xo, O]y_voo),  (3.17) 

where P, X and 0 are matrices that take their values in the Lie algebra of G. 
Surprisingly enough, the quantum-mechanical version of these models coincides 
with the models proposed sometime ago in [15]*. However, it is not guaranteed that 
the group G A will always exist. This has been demonstrated only for spherical 
membranes  [11, 12]. In that case G A is equal to the group SU(N),  where N and A 

* These models are reductions of supersymmetric Yang-Mills theories to 1 + 0 dimensions. The field 
introduced in sect. 2 corresponds to the timelike component of the gauge fields. 
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are related by A = N 2 - 1. Of course, subtle questions about the precise meaning of 
the limit A ~ oo still remain and will require further study. However, we shall 
ignore such questions here and turn to a more detailed discussion of the area-pre- 
serving transformations for the sphere and the torus. 

3.1. AREA-PRESERVING MAPS ON THE SPHERE 

On the sphere one conventionally takes the spherical harmonics Yl,,(O, cp) as basis 
functions, where we exclude the zero mode, so that the integers I and m satisfy 
l>__ 1, Im] < l .  With this basis we have w(O, cp)=(4~r)-lsinO. We choose the 
Condon-Shortley phase convention for the Ytm (we follow the definitions of [20], 
except for the normalization of the Yr,, which differs by a factor 4vr4~), 

so that 

= - m  , 

= ( - ) " S t -  

( 3 1 8 )  

(3.19) 

where 8 l denotes the Kronecker symbol 8to. The Lie bracket of two spherical 
harmonics then reads 

4. (  ,lml   ,2m2   ,2m2 t ( YO,,~' YO,,~ } = sin---O O0 Oqo Oqo 30 

/3,~3-- (3 .20)  = gllml"/2m2 ll3rn 2 - 

It should be obvious that gl~mt,12m2,13rn 3 = 0 ,  unless m 1 + m 2 + m 3 = 0. Furthermore, 
one can verify that 11 + 12 + 13 must be odd, for instance, by comparing the parity of 
both  sides of (3.20), and that l 3 < l 1 + l 2 - - 1 .  Using the antisymmetry of the 
structure constants it then follows that the structure constants only differ from 

zero if 

II 1 - 121 + 1 < l 3 _< l 1 q- l 2 - 1 ,  m 1 h- m 2 q- m 3 = 0 .  (3 .21)  

Another way to see this is by writing the spherical harmonics as symmetric traceless 
homogeneous polynomials of three cartesian coordinates x 1, x 2, x3: 

Yim(O, 99) = r-ta}[m?ixil.., xi,, (r  2 = x? + x~ + x~) (3.22) 

in which case the Lie bracket takes the form 

( A,  B } = 4~rreijkXiOjAOkB. (3.23) 
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Substitution of (3.22) into (3.23) leads to the same restrictions on 1,, 1, and I3 as 

listed in (3.21). The representation (3.23) also shows that the structure constants for 

I, = I, = I, = 1 are proportional to those of SO(3). 

In [12] it was shown that gll,l,,zm,,,,mz are the N + cc limit of SU(N) structure 

constants. Let us first indicate how SU(N) emerges in the truncation of the 

spherical harmonics to a finite set. This truncation is effected by restricting I to 

1 I N - 1, which leaves us with precisely N2 - 1 functions Y,,. To each Y&,, which 

corresponds to the symmetric traceless homogeneous polynomials (3.22) we can 

generally assign an N-dimensional matrix by constructing the corresponding sym- 

metric traceless product of SO(3) generators L, in the N-dimensional representation 

(spin s = :( N - l)), 

As is well-known, the L, satisfy the equations 

[Ll, L,] =iElikLk, Lf=L,, L2= q$, 

(3.24) 

(3.25) 

as well as the pseudo-reality condition 

L*=Ly= -(,.q-l. (3.26) 

The matrices (2.24) are traceless by virtue of the tracelessness of the tensors a(‘*). 

The dimension of the representation is chosen such that the T,, with I I N - 1 form 

a complete set of traceless N x N matrices. This can easily be seen by writing them 

as the traceless part of LP,L:, with L * the familiar raising and lowering operators, 

which are clearly independent, provided p + q s N - 1. Using the symmetry prop- 

erty (3.26) it then follows that the T,, with even (odd) 12 N can be expanded as a 

linear combination of the T,, with even (odd) 1~ N - 1. Note that the hermiticity 

of the T,, follows from the phase convention adopted for the spherical harmonics, 

so that 

(qm)t= (-)9-m. (3.27) 

From their completeness property it is obvious that the T,, are the generators of 

SU(N) in the defining representation, and we obtain the structure constants from 

Just as the structure constants of the area-preserving transformations, the SU( N) 

structure constants f,,m,,,,mz,,3m3 are only different from zero if I, + I, + I, is odd 
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(this follows from applying (3.26) to both sides of (3.28)), 13 _< 11 + l 2 - 1  and 
rn~ + m 2 + rn 3 = 0. Therefore we have the same restrictions on I i and mi as given in 
(3.21), except that one should keep in mind that, in the case of SU(N), there is the 
additional restriction that l~ _< N - 1. 

Due to (3.24) f6,,1,/2,,2,/3,,~ will converge to gllma,/2-~, 0"3' as N-~ ve [12]. Eq. 
(3.24) also implies that the Tt, . transform as tensor operators under rotations and 
once this is known the SU(N) structure constants defined by (3.28) are determined 
by group theory [21,12] up to the calculation of the reduced matrix elements. One 
gets (without loss of generality, we have assumed that 11 _< 12 < 13 while 11 + l 2 - 13 
is an odd positive integer) 

x lls 12s 13s ( - )  RN(13) ' (3.29) 

where (/~mt rn2t2 'n3t3 ) a n d  {ts~ /2s ls~} are the 3j-symb°l and the 6j-symb°l' respec- 

tively [20], with s = ~ ( N -  1), while the function R N is defined by 

/ ( N + l ) ! ( N Z - 1 )  1 ' 
RN(t) = V " (3.30) 

In the large-N limit, the expression to the right of the 3j-symbol converges to 

{/1 12 13}(__)NRN(ll)RN(12) N-*~(l+ll+12+13)ll!12[13!(_)13 -1 
S S S RN(13) 

~ (llq_ 12_13)!(ll q_ 13_ 12)!(12q_ 13_ll) ! 11+/2 /3 / 7 ( _ ) n  

(1 + 11 + 12+ 13)! ,=0 

(3.31) 

where 

F(n) = n! (/1 -'}- 12 - 13 - / 7 ) !  (11 - / 7 ) !  (/2 - /7)! (17 -~- l 3 - / 1 ) !  (/7 -~- l 3 - /2)! .  (3.32) 

The large-N limit of (3.29) coincides with the structure constants grml, 12m2,13m3 for 
the full group of area-preserving transformations. The mathematics underlying this 
result [12, 22] is quite intriguing, and could lead to the possibility of approximating 
other infinite-dimensional Lie algebras of symplectic diffeomorphisms on homoge- 
neous manifolds by large-N matrix algebras. 
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3.2. AREA-PRESERVING MAPS ON THE TORUS 

Choosing torus coordinates 0 < #'1, 4~2 < 2~r the basis functions YA are labelled by 
two-dimensional vectors m = (m 1, m2) with m 1, m 2 integer numbers. They are 
defined by 

Y , . ( , )  = e ' " * ,  (3.33) 

where m . f f  = ml~b I q-m2dP 2. Again we will exclude the zero mode, so that m ¢ 0. 
Fur thermore we have w(ff) = (4~r 2) 1 and 7,,, = 8,.+,. For the Lie bracket of Y,. 
and Y., one easily finds 

{ Y,,, Y .}  = - 4 ~ r 2 ( m  X n ) Y m + , ,  (3.34) 

where m X n = - m l n 2 - m 2 n  1. The structure constants gABC follow directly from 
(3.7) and read 

g,. .k = --47r2( m X n)6 , .+,+k.  (3.35) 

The elements of the Lie algebra associated with G are thus labelled by the set of 
nonzero two-dimensional vectors m with integer coordinates. The commutator  of 
two generators corresponding to two vectors of this lattice is then equal to the 
generator corresponding to the sum of the two vectors, multiplied by i times the 
oriented area of the parallelogram enclosed by the two vectors. Generators associ- 
ated with parallel vectors thus commute. There exits an infinite variety of Cartan 
subalgebras, each infinite dimensional, consisting of the generators corresponding to 
the set of parallel vectors m = ),n, with n fixed and )t all nonzero integers. 

The algebra corresponding to the structure constant (3.35) has been discussed in 
connection with the theory of incompressible fluids in [19]. Recently, it was 
emphasized that it contains subalgebras that are isomorphic to the Virasoro algebra 
[23]. One such subalgebra was explicitly given; its generators take the form 

1 1 
L,, - 4v  2 ~ 0  ~- Y(k,,,+k)- (3.36) 

More generally, solutions are obtained by taking a (logarithmically diverging) sum 
of the Y,, along a straight line in the 2-dimensional plane. For instance, one may 

take 

1 1 1 1 
L,~ = 47r2 k~,0 ~pp Y~m, k , , ,  or L m = 4 r r 2 k ~ , o ~ T Y ~ p . m + k , ,  (3.37) 

where p is some nonzero integer. However, some caution is required with the 
infinite sums in (3.36)-(3.37), as the formal expressions for L m do not correspond to 
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differentiable functions of the torus coordinates ~1 and ~2. The Lie algebra based 
on (3.35) allows for a nontrivial central extension, 

{Y,., Y,} = -4~ra(m x n)Y. ,+,  + c .  m6m+ . , (3.38) 

where c is a real two-dimensional vector. This result was also noted in [23]. 
Furthermore, one can enlarge the torus algebra to include fermionic generators X, 
with (anti)commutation relations* (to avoid confusion with the usual symbol for the 
anticommutator, we replace - (1/4qr2){  , } by [ , ]) 

[ym, L]  = (,,, × . ) L ~ + . ,  

{ x . ,  x . }  = Y.+., 

[ Y,., xA  = (,,, x ,') x . ,+ . ,  (3.39) 

where the fermionic generators X, are labelled by the set of two-dimensional vectors 
r = @1, r2), with r 1 and r 2 ranging either over the integers, or half integers (so that 
we get four different algebras, two of which are isomorphic to each other). 

4. The supermembrane as a supersymmetric quantum-mechanical model 

In this section we combine the previous results and study the properties of the 
supermembrane ground state. So far, we have not been able to prove or disprove the 
assertion that the supermembrane has massless states, although most of our results 
indicate that the ground state is massive. However, we stress that more work is 
needed before one can reach a definitive conclusion regarding this issue, and we 
hope that the results described here will pave the way for a more rigorous treatment 
of supermembranes which goes beyond perturbative (semi-classical) arguments. 

The quantization of the supermembrane is straightforward in the SO(7) × U(1) 
formulation that we have presented in sect. 2. The coordinates are therefore Xi(o), 
Z ( o ) ,  Z ( o )  and X~(o), with corresponding canonical m o m e n t a  Pi(o) ,  ,~(o) ,  6~(o) 

and Xt~(o). The (anti)commutators of the operators associated with the coordinates 
and the momenta are given by the Dirac brackets (2.65) multiplied with an extra 
factor i. The operators P',  N, ~ and X* can then be realized on wave functions (or 
rather functionals) xo[ X i, Z, 2,  X] by 

0 0 

p , ( o )  = - i a x , ( o  ) , ~ ( o )  = - i  oz(o---- 5 , 

0 1 0 
• ( o )  = - i  0 2 ( 0 )  X+(cr) " (4.1) ' w O X ( o )  

* This superextension of the algebra has been obtained in collaboration with Garreis (see [24]) and J. 
Wess. 
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It is now straightforward to write the relevant formulae from sect. 2 in this 
representation. Before doing so, we "regularize" the supermembrane theory by 
decomposing the coordinates and the momenta in terms of a finite set of function 
yO(o) and YA(o) with A = 1 . . . . .  A. As explained in sect. 3, the structure constants 
gABC of the group of area-preserving transformations are then replaced by the 
structure constants fAsc  of a finite compact Lie group G, with dimension 

dim G = A.  (4.2) 

In the limit A--* oe the group G is assumed to coincide with the group of 
area-preserving transformations. This procedure turns the supermembrane into a 
model of supersymmetric quantum mechanics [13,14] and leads precisely to the 
supersymmetric matrix models that have been constructed in [15]. An important 
consequence of this approach is that supersymmetry remains preserved, while the 
invariance under area-preserving maps is approximated by the invariance under G. 
For  membranes topologically equivalent to S 2 the group G is equal to SU(N)  and 
the limit N ~ ~ has been shown to yield the full group of area-preserving 
transformations [12]. However, in this section the precise nature of G does not play 
an important  role. 

The model that we will be considering in this section is thus based on a finite set 
of coordinates X~, Z A, 2 A and X~, together with their canonically conjugate 
momenta Pi A, ~A, ~A and ~*.  Here, the index A labels the adjoint representation 
of G. There are also the zero-mode (or center-of-mass) coordinates X 9, Z °, 5 ° and 
)~o, but as we have already emphasized, these decouple entirely from the other 
coordinates, and do not contribute to the mass of the supermembrane states. The 
(anti)commutation relations corresponding to (2.65) are 

[ z A ,  -- [ 2A,  = 

(4.3) 

while all other (anti)commutators vanish. The conjugate momenta can thus be 
represented by the operators 

0 0 

PiA= -- i  oxiA , ~° A = - i  OZ A , 

0 0 
- ( 4 . 4 )  

axe' 



568 B. de Wit et al. / Supermembranes  

in agreement with (4.1), and the states of the theory correspond to the wave 
functions '/ '(X~, Z A, 2 A, X~). The latter are elements of the Grassmann algebra 
generated by h A and may be expressed as* 

8A 
a I . . ,  a k - -  A I A 2 . • . ' / ' =  E ¢b,],...,4,(X, Z, Z)~.,,X~,~ ~.~. (4.51 

k=O 

The norm of the state '/' can then be defined through 

84 1 
]l~[12= ~, - -  o5 ...... *[I 2 

k l  l l = A l . . . A k l l  , 

k ~ O  • 

(4.6) 

with the usual LZ-norms for the coefficient functions ~ .... &. Of course, one also 
has the customary distinction between bosonic and fermionic states according to 
whether only even or odd powers of h~ appear. 

We next make the appropriate substitutions in the supercharge operators of sect. 
2. The supercharges that pertain to the nonzero modes, follow directly from the 
SO(7) × U(1) covariant expressions in (2.66) and take the form 

±r VBVCWJ--fABcZBZC~ X~ Q~= . i _ _ +  ZSABC"i'~s~I~ 

{o 1o + s + i/A  x72 r:  ' 

o } 
Q~ = f iF:/~_~_._~ A + 1 f y B y C p i j  ~_ f A B c Z B 2 C ~ a ~  - -  

O X i 2 J  A B C ~ X i  z , j  X al~ 

0 
+ if,4BcX, BzCF'~/sl M~ + d {  - T2 - 

O 

0?,~A 

(4.7) 

These charges define a supersymmetric quantum-mechanical model, whose hamilto- 
nian follows from the {Q, Q*} anticommutator. In order to exhibit this, let us 
evaluate the anticommutators of the supercharge operators Q and Q*. After a 
somewhat lengthy calculation, using the antisymmetry of fABC as well as the Jacobi 

* Observe that we suppress the dependence on the zero-mode coordinates in (4.5). We will return to 
this shortly. 
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identities, one arrives at the following superalgebra 

{ O~, O¢ } = 2¢~-8,t~Zracp`4, 

{ 0'., } = 2 ao z%, 

{ Q,~, Q*# } = 2a,~BH- 2ir'pXiA~`4. (4.8) 

This result is consistent with the Dirac brackets (2.65), with the operators H and % 
corresponding to the contribution from the nonzero modes to the hamiltonian (2.67) 
and the constraint (2.51). The explicit expression for this hamiltonian, which is 
directly related to the membrane mass ~ ' ,  reads 

1 2 (4.9) H = 7J/' = H b + Hf ,  

where 

1 0 2 0 2 

Hb 2 OX• OXi A OZ A OZ`4 + V ( X ,  Z, Z ) ,  (4.10) 

with positive potential V given by 

and 

V( X, Z,  Z )  = ¼f~fcD~ { XiAx~xCx~ + 4 x A z B x C z D  + 2Z`4ZsZczD }, (4.11) 

. . . .  `4"lBFi 1 z A  0 0 
Hf = q`4Bca~ h ,  ~l~ O)t3 C + ~/2f`4Bc Z`4~t~ 2tc - OX,, e O)k,~c • 

The algebra (4.8) still contains the operators q0 A, which are the components of the 
constraint (2.51), and given by 

o 0 2 _ 0  o 1 
= + X~--i- U . " t ' " " ° x f  + z " S T  + ~a2 ~ axo J 

(4.13) 

Obviously, 99 ̀4 are just the generators of the group G, which must vanish on physical 
states, i.e., 

q~̀4 q" = 0. (4.14) 

Consequently the wave functions corresponding to physical states must be invariant 
under G (or the full group of area-preserving diffeomorphisms). On physical states 
one thus recovers the usual supersymmetry algebra. The expressions (4.9)-(4.14) 



570 B. de Wit et al. / Superrnembranes 

precisely coincide with the results of [15], where quantum-mechanical models were 
discussed with up to 16 supercharges. Hence we have established that the super- 
membrane  is a limiting case of this class of models. 

The zero modes, which are not contained in the quantum-mechanical models of 
[15], lead also to corresponding supercharges, as we have already discussed in sect. 
2. In the SO(7) x U(1) notation, there is one complex charge associated with Q -  
and one with Q+ (cf. (2.54), where we denote the latter by Q+(0) to indicate that it 
contains only contributions from the zero modes. In the representation (4.4) these 
charges read 

O 

O~-=X ° ,  a~*  = Oh o , 

3 8 8 
= _ ir/; Wo G + ¢ f  a X  i a Z  0 a~k O '  

8 a 8 o 
0_.~ °~* = i G ~  a x  ? o~Se + v~ ~-~x . .  (4.15) 

It  is easy to determine the supersymmetry algebra for the above charges, which is 
the quantum-mechanical analogue of (2.58) in SO(7) × U(1) notation. This algebra 
contains the hamiltonian 

1 8 2 3 2 
H (°) = (4.16) 

2 8 X  ° aX~ ° 3 Z ° O Z  ° ' 

which is just the transverse kinetic energy of the membrane. The wave function 
associated with the zero modes is simply a plane-wave solution in terms of the 
transverse coordinates X °, Z ° and ~0 with a certain transverse momentum, 
multiplied by an arbitrary function of the fermionic zero modes X °. This wave 
function thus describes 128 bosonic states 1, X°X~ . . . .  and 128 fermionic states 
Xo, Xo)t~Xo v . . . . .  Under SO(9), these transform as the 44 ¢ 84 and 128 representa- 
tions. The 128 + 128 independent wave functions transform under the supercharge 
operators (4.15) as the states of a massless d = 11 supergravity multiplet. To see this, 
it is convenient to choose a Lorentz frame in which the transverse momentum 
vanishes, so that the charge Q(0) vanishes and one is only left with Q- .  Conse- 
quently, if the wave function (4.5) associated with the ground state of the nonzero- 
mode  system is not degenerate, then the supermembrane ground state constitutes 
precisely a mass less  supermultiplet. 

According to the above arguments, the zero modes are no longer relevant, and we 
have to determine the nature of the ground state corresponding to the hamiltonian 
H which governs the nonzero modes. According to (4.9), massless states ' / '  must 
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obey the SchrSdinger equation 

H~/, = 0. 
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(4.17) 

From the supersymmetry algebra, it follows that H can be written as 

H = ~ { Q ~ , Q ] } .  (4.18) 

The hamiltonian H is thus a positive operator, which vanishes if and only if the 
ground-state wave function q" is a singlet under supersymmetry, in which case 

Q~q" = Q]q" = 0. (4.19) 

Although this condition ensures that the ground state is massless, it does not 
immediately imply that the ground state constitutes the desired supermultiplet. In 
d =  11 dimensions one has to require separately that '/" is also a singlet under 
SO(9).* For future purposes let us list the SO(9) generators in terms of the 
coordinates and momenta introduced above. It is convenient to decompose them 
into "orbital" and "spin" parts according to 

where 

j ab  = Lab + s a b ,  (4.20) 

O 0 

L J:X# axf x /  ox , 

O _ 0 
L89 = i Z  A 3 Z  ~ - i Z  A 0~--- ~ , 

0 3 
_ _  _ _  2 A - -  

L,+= Xi" O Z  A 3 X ~  ' 

and 

0 0 
- -  - Z ' - -  ( 4 . 2 1 )  L,_ = x#  a 2 ;  ax?  ' 

3 a 
S i j  l~)tA F i J  3 = 1 i?tA = 2 " a  aft • A '  389 - ~ , ~  + iCo'  

e, A,~ 

i 3 ? i 
S i - -  2V~- aX{ F~'a a~.~ a , Si+= 2v/~- )t~r~'~Ytaa. (4.22) 

* In lower-dimensional space-times • must  transform nontrivially under the S O ( d - 2 )  group o! 
transverse rotations in order that the ground-state constitutes a supergravity multiplet. 
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Note  the appearance of the "normal-ordering" constant c o - 2A in Ss9. There is an 
associated hermitean U(1) charge operator J+  which reads 

O O O 
J + - - - - / ' / 8 9  = g A  _ 1 ~ka ( 4 . 2 3 )  OZA Z a T j T  + ~ ,7qT, A --Co, OX, 

(with corresponding definitions for S+_ and L+_). Defining the charge q of any 
operator 0 by means of [J+_,  (9] = q(9, we see the variables Xi a, Z A, ~A and ?,{ 
carry the U(1) charges 0, - 1 ,  + 1 and ½, respectively. 

Our main task is now to solve (4.17), or equivalently (4.19), for some G-invariant 
wave function '/'. We expect that the method of solving (4.17) for finite A cannot be 
used for purely bosonic membranes, because the ground-state energy of the bosonic 
membrane  will diverge in the limit A ---, v¢ and needs to be renormalized (see, e.g. 
[25]). Since this is a nonrenormalizable theory there is an inherent ambiguity in the 
calculation of the finite part of the infinite renormalization. On the other hand, if 
one succeeds in finding a state obeying (4.19) for the supermembrane, this state will 
remain a proper ground state in the limit A ---, 0¢. Nevertheless, we cannot a priori 
exclude the possibility that the lowest eigenvalue of H is strictly positive for finite A 
but only tends to zero as A---, 00. At any rate, we expect that the Bose-Fermi 
symmetry leads to the usual softening of divergences associated with the large-A 
limit. 

Up to this point, the analysis is completely analogous to the corresponding one 
for superstrings (a detailed discussion may be found in [26], sect. 11.7). The much 

more difficult part  of the problem, however, resides in the nonzero mode part  of q'. 
First of all, the hamiltonian (4.9) describes an interacting theory and not a free 
theory as in superstring theory. Secondly, the constraint (4.14) has no analog in 
string theory. There, one only demands invariance of the physical Hilbert space 
under rigid (i.e., length-preserving) translations that are generated by the operator 
N L - N R, which does not mix different oscillator modes. The group of area-preserv- 
ing diffeomorphisms is much larger and, in particular, does not admit an invariant 
split into positively and negatively indexed modes. 

In order to facilitate the calculations, one can make the additional assumption 
that ,/" is an SO(9) singlet. As alluded to above, this is in fact necessary if one wants 
to recover d =  11 supergravity as a "low-energy limit" from the supermembrane. 
For otherwise, the ground state would transform as [(44 • 84)b • 128f)] times a 
nonsinglet representation of SO(9) and would therefore describe states other than 
those of the d = 11 supergravity multiplet. Unfortunately, the requirement of SO(9) 
invariance does not lead to significant simplifications, so that this approach is not 
particularly useful. We refer the reader to the appendix for a more detailed analysis 
of the structure of SO(9)-invariant wave functions. However, one can show that the 
ground-state wave function cannot factorize into a bosonic and a fermionic func- 
tion, i.e., it cannot be of the form '/" = q'b ® '/'f, with either q'b or '/'f (or both) SO(9) 
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or G invariant. The reason is that H r, defined in (4.12), can be written as a product 
of two operators, a bosonic one equal to the bosonic coordinates, and a fermionic 
one, bilinear in the fermion operators, which both transform as a vector under 
SO(9) and in the adjoint representation of G. Sandwiching H e between the ground- 
state wave functions, it follows from the SO(9) or G invariance of either X~t b o r  ~/tf 

that ( ~ ,  H e ~ )  must vanish. Therefore, as a result of (4.17), ( '/ ' ,  //bX~ t)  = (~Pb, HbkItb) 
= 0. Because H b is a positive operator, this implies that ~'b must vanish. This 
situation is in sharp contrast to superstrings where the (nonzero mode) ground-state 
factorizes into a bosonic and a fermionic SO(8) singlet, and where one has a 
mode-by-mode cancellation of the vacuum energies. 

In general, the relevant equations Q q ' =  Qt , / ,=  0 are very difficult to solve. 
Therefore we will now consider two special cases to illustrate some of the difficul- 
ties. The first one is a truncation of the membrane theory, in which we discard the 
coordinates Z A, ~A and )t~. We accordingly split the S0(7) spinor indices a, fl . . . .  
into i , j  . . . .  = 1  . . . . .  7 and a, fl . . . .  = 8  and make use of the fact that (see, e.g. 

[27,281) 

(4.24) 

where cij k are the octonionic structure constants obeying 

Cijmcklrn = 23~1 _ 1_ .mnp 6 ~ijklmnp ~ (4.25) 

as well as a number  of other relations which can be found in [28]. In this truncation 
the supercharges (4.7) take the form 

0 ! ,~i jk f  ~(-ByC t )~A 

a 1 ijk~ .~B,~c] 0 
Ors = - O-~i A + ~c JAeCA) A i t o)tiA " (4.26) 

The symmetry of this theory is now reduced to N =  1 supersymmetry, the G 2 
subgroup of SO(9) and G. The equation Q ' / '  = Qtq, = 0 can easily be solved and 
one finds two G 2 × G invariant solutions, 

~) f ! c ~ J ~  X ~ X ~ X  c g q - - - 1 - I N  e x p t 6  ~ABC i j k ) ,  
i ,A 

~/12 ~ e x p  { --  l p i j k f  y A y B y C  . g~ JABC~'i ~'e "'k } ( 4 . 2 7 )  
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It is amusing that in the membrane limit these two solutions become 

~1 [ X ( ° ) ,  ~ ' (°)]  = ( / , I ~ i ( ° ) ) e x p  {~ f d:z°erscijkXiOrXJO~Xk}, 

kO2 [ X ( a ) ,  h ( o ) ]  =exp{- l fdzoersci jkXiO,XJOsXk},  (4.28) 

so that the ground-state wave functionals are exponentials of a Wess-Zumino-Witten 
term, with corresponding torsion proportional to cqk. However, both solutions 
(4.27) fail to be square-integrable, and this problem persists for (4.28). Thus, there is 
no supersymmetric ground state, so that this truncation has no massless states. 
From the analogy with ordinary N = 1 supersymmetric quantum mechanics, this is 
what one would have intuitively expected for the full supermembrane, too, as the 
differential operator, which appears in (4.7), is + O/OX+ X 2, rather than +_ O/OX 
+ X as in superstring theory [14]. However, the argument is vitiated by (amongst 
other things) the nonexistence of an SO(9)-invariant (or even SO(7)-invariant) 
three-index tensor analogous to cij k. Observe also that both solutions in (4.27) are 
singlets in their bosonic and fermionic factors. This does not contradict our findings 
above, because the wave functions do not tend to zero at spatial infinity, and for 
such functions the hamiltonian H b is not a positive operator. 

The second truncation which we will consider, consists in discarding the variables 
Xff and X~, thus retaining only Z A, 2 A and h A -X~.  This corresponds to a 
membrane moving in a d = 4 dimensional space-time. The supercharges follow 
directly from (4.7) and read 

0 8 
r ZA2BU 

Q= V~ OZ A OX A JABC 

0 0 
Qt = _ v/~ ~ _ ~ A  + fABcZA2B O X---~ " (4.29) 

It is clear that the ground state cannot factorize into a bosonic and fermionic part 
and therefore we proceed from the ansatz* 

Z 
k_>l 

(4.30) 

where the coefficient functions ~A .... A2k are completely antisymmetric in the indices 
A 1 . . . . .  A2k .  To make life as simple as possible, we take G equal to SU(2), so that 

* We could also choose xO such that only odd powers of X appear. 
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A, B, C . . . .  = 1, 2, 3, and fABC= e~BC. The decomposition (4.30) then simplifies to 

~, = % ( z ,  2 )  + ~ " % ~ ( z ,  2 ) x " x  c .  (4.31) 

(We choose a real basis for the adjoint representation of SU(2), so the position of 
indices is immaterial). 

Requiring Qq" = Qtq, = 0, we get 

~A"~ZA2%C(Z, ~) = o, (4.32) 

which tells us that 

q0 A = Z%p 1 + Z%p2, (4.33) 

and three more equations, 

ZA O~l 2A 0~2 
+ 3~p2 + 024  = O, (4.34) 

(4.35) 

0 %  _ 2 [ ( Z - Z ) Z  A - Z2ZA]qvl + 2 [ Z 2 Z  A - ( Z - z ) z A ] q 0 2  . (4.36) 
v~ o2 ~ 

Upon multiplication by Z A and Z'~, (4.36) leads to 

1 1 2A 0% 
~1=  ~ -  (Z"  2 )  2 -  Z222 024  ' 

1 1 Z A 0 %  (4.37) 
O2A " • 2 = - ~ -  ( z .  2 )  2 - z 2 2 2  

Substituting this result back into the previous equations, it turns out that (4.34) is 
identically satisfied, while (4.35) and (4.36) lead to 

~BCzA2S  8 %  eABCz,~2 ~ 0 %  
OZ c = 0 2  c = O, (4.38) 

# % =  : /b+ (Z .2 )2_Z222H~E 2 ~ a o a 8 2  E - Z  ~ - ~  % = 0 .  (4.39) 
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Here H b is the hamiltonian defined in (4.10), which in this case reads 

0 0 
H b c)zA OZ A -I- I [ ( Z - Z )  2 -  Z222] . (4.40) 

According to the constraint equations (4.14), the wave function must be SU(2) 
invariant, in which case eqs. (4.38) are obviously satisfied. Hence we are left with a 
Schfi5dinger equation for an SU(2)-invariant wave function %,  given by (4.39). The 
corresponding hamiltonian, /4, consists of a linear combination of H b, which is the 
hamiltonian for a bosonic membrane, and an extra term. 

For  the class of wave functions for which the hamiltonian is self-adjoint, we find 
that 

(q%,HbePo)=fd3Zd3Z -I- 1 [( Z - Z)2 - 2222]  IqOol 2 , (4.41) 

which is positive because 

( Z - 2 )  2 -  Z 2 ~  "2 ~ O. (4.42) 

Under  the same conditions, we have 

1 eABC ZS2c [ 
( % , ( i ~ _ H b ) % ) = f d 3 Z d 3 Z _ ~  (Z[~/--Z222~ADE[L~ D 0 

0 2  e 
v a )1%12 - - - Z - ~  

(4.43) 

Because 

~ADE(zD 0 D 0 EABCzBz C 

o U  - z ) ( z .  - z 2 Y  
= 0 ,  (4.44) 

the integrand in (4.43) can be written as a total divergence, which suggests that one 
can rewrite (4.43) as a surface integral. However, one has to take into account that 
the integrand has a singularity whenever ( Z .  2 )  2 = Z 2 2  2. This happens when Z ~ 
becomes proportional to a real vector (or, in other words, whenever the two vectors 
Re Z A and Im Z A are aligned). Therefore, the integral (4.43) splits into two terms, 
one corresponding to the surface integral associated with large distances ( Z .  Z- - ,  
oc), which yields a positive contribution, and another one corresponding to the 
contribution from the singularities, which turns out to be negative. To show this 
more explicitly, on may choose a parametrization in terms of the SU(2)-invariant 
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variables 

=_ z A z  ~ , ~ - 2 ~ 2  ~ , ~ - ~/((Z.  2 )  2 - Z 2 2  '2 . (4.45) 

It is not hard to see that / t -  H b is now equal to 

_ O (4.46) 

Furthermore,  on SU(2)-invariant functions we have 

~ d ~ d f d ~  
d 3 Z d 3 Z  oc , (4.47) V'~ 2 + I~12 

up to "angular"  variables whose integral yields an irrelevant (positive) constant c. 
Substituting (4.46)-(4.47) into (4.43), and performing the integral over ~, we then 

find 

Hu) 0)= -of d~d~ k%(~ = 0, ~', ~) ] 2, (4.48) 

where we have dropped the contribution at ~ = ~ ,  which is proportional to  ]q0012 at 
spatial infinity. Therefore we have shown that for wave functions vanishing at 
infinity, the energy of a supermembrane will be lower  than that of a corresponding 
bosonic membrane.  

On the other hand, imposing the boundary condition that 9)0 vanishes when 
Z . Z ~  oc, one can see that no solution of (4.39) exists, as H is an elliptic 
differential operator (see e.g. [29], p. 320 ff.). Consequently, solutions that are 
subject to these boundary conditions do not  have zero energy. We should empha- 
size, however, that the above boundary condition is not implied by square-integra- 
bility*, and we have not been able to establish the existence or nonexistence of a 
general square-integrable solution to (4.39). 

It is now evident that the general case with arbitrary N is even harder to tackle 
because the number of coefficient functions in (4.30) as well as the number of 
S U ( N )  invariant variables analogous to (4.45) is further increased as N becomes 
larger. In particular, there seems no real advantage anymore to replacing the 

1 1 /4  2 This is, for instance, demonstrated by the function f(~, ~, { )=  [ e x p [ - ~  I S'[ -} (z ] .  which 
does not satisfy the above boundary condition, as liml.¢l~f((X~',{)=oo, but nevertheless 
f~  d~: fd2~" Jf(~, ~', ~)12 < oo! 
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second-order equation (4.17) by the first-order equation (4.19), since decoupling 
these equations will automatically lead to higher-order equations. 

Note added 

After this paper was completed we learnt that Claudson and Halpern (see [15]) 
consider wave functions similar to (4.27). Furthermore, we have meanwhile calcu- 
lated the Witten index for the SU(2) model discussed at the end of sect. 4 along the 
lines of ref. [31] and found that it vanishes. This is consistent with the conclusion 
that there are no massless states. 

Appendix 

STRUCTURE OF SO(9)-INVARIANT WAVE FUNCTIONS 

We here briefly describe how to construct SO(9)-invariant wave functions which 
do not factorize into bosonic and fermionic parts that are separately SO(9)- 
invariant. The basic idea is to first consider nontrivial SO(9) representations in 
either sector and then fold them together to form a singlet. This is completely 
obvious for the SO(7) subgroup of SO(9) and the nontrivial part of the analysis 
involves the generators J~+ which are nonlinearly realized on the Grassmann 
algebra, cf. (4.22). As is well-known, any SO(9) representation can be characterized 
by its highest weight or, equivalently, by its Dynkin label (see e.g. [30]). In the 
present case this label consists of four positive integers (ala2a3a4) , the first three of 
which indicate the SO(7) representation and the last of which is associated with the 
U(1) charge operators L+_ and S + .  The highest-weight state I(ala2a3a4)) must 
be annihilated by the raising operators L~+ and Ss+, i.e. 

Li+l(ala2a3a4)>b-=O, or  Si+l(ala2a3a4)>f=O, (A.I)  

for a bosonic or fermionic representation, respectively. Of course, it must also be 
annihilated by the remaining raising operators of the SO(7) subgroup but this (and 
analogous statements) will be understood in the following. The representation is 
then generated by applying the lowering operators L~_ for the bosonic representa- 
tions, or S i for the fermionic representations, until one reaches the lowest-weight 
state; in this procedure, the U(1) charge a 4 is changed by one unit at each step. 
From the discussion in sect. 4 we learn that the fermionic wave functions have a 
maximum U(1) charge which is equal to the normal-ordering constant c o = 2A, so 
we will restrict ourselves to representations with l a4] _< c 0. 

We will now illustrate how this works by looking at various examples, first in the 
bosonic sector. So let us start with 

}(0O0co))b = (A.2) 

Obviously this state transforms under the symmetric tensor representation of the 
group G which is associated with the indices A 1 . . . . .  Aco, but because G commutes 
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with SO(9), this aspect is not very important. Clearly, the state (A.2) is an SO(7) 
singlet and annihilated by Li+ (use the explicit expressions in (4.21)). Acting on it 

with L;_, we obtain 

L , _ ( 2 A ' . . .  2~oo) = %x[ ~, 2A~... 2 ~,o,. (A.3) 

The U(1) charge of (A.3) is (c o - 1) while the G-representation content is evidently 
unaltered. Continuing in this fashion, we get 

£, /~j_(2,'~... ~,%) 

= CO(C 0 --  1 ) X i ( A 1 X / 2 Z A 3 . o .  Z'dco ) --  C O ~ i j z ( A 1 2 A 2 2 A 3 . . .  2 AcO) , (A.4)  

and so on. Hence, we just obtain a generalization of the usual SO(9) spherical 
harmonics. To also have an example with a 4 = C 0 - -  1, one may start from any of the 
following states 

[(* * * Co- 1))~ = x tB,~,~2A~.. .  2 ~ ,  

X, EB'X722B312A2... 2 ~', o r  

(A.5) 

where (* * *) is the appropriate SO(7) label. Owing to the antisymmetry in the 
indices B 1, B 2 , . . .  the states (A.5) are anihilated by L;+. 

The construction in the fermionic sector is similar. Since, by (4.23), the highest- 
weight state contains the maximal number of X's, it is more convenient to start with 
the lowest-weight state. The analogue of (A.2) is then 

I(000 - Co))r = 1, (A.6)  

which is annihilated by S i .  The action of SI+ now produces the state 

i 
s,+ I (ooo-~o)}~ = -5~-x~r'x,,, (A.7) 

which has charge - c o + 1. The analogue of (A.5) is the set of states 

2 
~BI~B2 , ~B1Fi~B2 --  - - ~ B 1 B 2 ] ~ C F i ~ c  ' ~BII~J.]~B2 ' 

c o 

; V ~ F i ' / k ; k  B~ . (A.8) 

An SO(9) singlet can now be formed by folding together the same bosonic and 
fermionic SO(9) representations. The resulting wavefunction can then be turned into 
a singlet with respect to G by contraction with an appropriate bosonic function of 
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SO(9) singlet variables such as XfX~  + z A z B +  ZB2 A, etc. For instance, from 
(A.2) and (A.6), we can construct the following SO(9)-singlet wavefunction 

q , =  l(OOOco))~ ® l(ooo - %))~ 

+~L, I(ooo%))~ ® s,+kooo-%))~ 

+ BL,_ L,_ L(oOO~o))~ ® s,+ s,+ I(ooo - %) )~ 

q- ~lti_L i_ I(O00co) ) b ~ Sj+ Sj+ {(000 - Co)}f 

+ " - .  (A.9) 

The coefficients a,/~, ~, . . . .  are determined from the requirement J, +q" = 0. Using 
the SO(9) commutat ion relations and the known U(1) charges together with 

Lijl(O00co)) b = Sij] (000 - c0))f = 0 we find 

1 1 ,8 
= - ,  /~ = ~ - - -  ( A . 1 0 )  

c0 2c0(c 0 -  1) ' 2¢ o +  5 

After contraction with an appropriate bosonic wavefunction, (A.9) can also be 
expressed as 

q,= ~,~ ~c0(x, z, 2) 

Another example is 

~I3' = ~BIB2A .... Aco( X, Z,  Z )  

x{XBlXB2zA2...ZAco-I---~VI~XBlXB2XCI~Jx C X~22~,.. .  2A,o + . . .  }" (A.12) 

It  is not difficult to verify directly that indeed Ji + = Li _+ + S i + vanish on '/" and 
q", at least to the order given. Obviously, there is a multitude of possibilities and 
very little hope of a complete classification. One can also prove that the supermem- 
brane wave function for a massless ground-state cannot just be of the form (A.11). 
This follows directly from the observation that Hfq" contains no h-independent 
term for '/" given by (A.11), so that Hbq' must vanish up to order X 2 for a massless 
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g r o u n d  state .  F r o m  the  fact  tha t  H b is pos i t ive ,  it then  fo l lows  tha t  ' / '  m u s t  in fact  

van i sh .  T h i s  c o n c l u s i o n  is a l r eady  sugges ted  b y  the  fac t  tha t  (A.11) is an  e igen func -  

t i o n  o f  b o t h  L 2 and  S 2, whi le  the h a m i l t o n i a n  does  no t  c o m m u t e  wi th  these  

o p e r a t o r s .  A b o t h e r s o m e  fea tu re  is tha t  the  degree  o f  the  SO(9)  " s p h e r i c a l  har-  

m o n i c "  is l a rge r  t han  or  equa l  to c 0 = 2A  a n d  the re fo re  increases  w i thou t  b o u n d  as 

A ~ c~. I t  is h a r d  to see w h a t  r e a s o n a b l y  b e h a v e d  w a v e f u n c t i o n  cou ld  ensure  

s q u a r e - i n t e g r a b i l i t y  of  ' / ' ,  ' / " , . . .  o r  any  l inea r  c o m b i n a t i o n  the reo f  in this l imit .  
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