topology (point-set topology, point-free topology)
see also differential topology, algebraic topology, functional analysis and topological homotopy theory
Basic concepts
fiber space, space attachment
Extra stuff, structure, properties
Kolmogorov space, Hausdorff space, regular space, normal space
sequentially compact, countably compact, locally compact, sigma-compact, paracompact, countably paracompact, strongly compact
Examples
Basic statements
closed subspaces of compact Hausdorff spaces are equivalently compact subspaces
open subspaces of compact Hausdorff spaces are locally compact
compact spaces equivalently have converging subnet of every net
continuous metric space valued function on compact metric space is uniformly continuous
paracompact Hausdorff spaces equivalently admit subordinate partitions of unity
injective proper maps to locally compact spaces are equivalently the closed embeddings
locally compact and second-countable spaces are sigma-compact
Theorems
Analysis Theorems
hom-set, hom-object, internal hom, exponential object, derived hom-space
loop space object, free loop space object, derived loop space
In the strict sense of the word a loop space in topology for a given pointed topological space $X$ is the mapping space (with its compact-open topology, see the example there) $Maps_\ast(S^1, X)$ of continuous functions from the circle to $X$, such that they take the given basepoint of the circle to the prescribed basepoint in $X$ (or if one drops this condition, then one speaks of the free loop space). One such continuous function may be thought of as a continuous loop in $X$, and hence the mapping space is the space of all these loops.
If here $X$ is equipped with further structure, such as smooth structure (e.g. a smooth manifold), then one may in good cases find such extra structure also on the loop space, for instance to form a smooth loop space, etc. See at manifolds of mapping spaces for more on this.
If one regards this construction not in point-set topology but in classical homotopy theory of topological spaces (equivalently ∞Grpd), then, up to weak homotopy equivalence, the loop space is equivalent to the homotopy fiber product of the basepoint inclusion $\ast \to X$ along itself.
Let Top be a nice category of topological spaces, in particular one which is complete, cocomplete, and cartesian closed. Let $(S^1, pt)$ be the circle, i.e., 1-dimensional sphere, with chosen basepoint, and let $(X, *)$ be a space with a chosen basepoint. Then the loop space of $X$ (at $*$) is an internal hom
in the category $Top_*$ of based spaces. Explicitly, it is given by the pullback in $Top$
(using exponentials to denote internal homs in $Top$), in other words the function space of basepoint-preserving maps $S^1 \to X$, whose basepoint is the constant map $S^1 \to X$ at the basepoint of $X$.
The category $Top_*$ is symmetric monoidal closed; its monoidal product is called the smash product, often denoted $\wedge$. In particular, the loop space functor
has a left adjoint obtained by taking smash product with $(S^1, pt)$. This left adjoint $S: Top_* \to Top_*$ is called the suspension functor. Explicitly, the suspension $S X$ is formed as the pushout
with basepoint provided by the right vertical arrow.
A loop space is an example of a A-∞ space, in particular it is an H-space. Loop spaces admit this rich algebraic structure which arises from the fact that the based space $S^1$ carries a correspondingly rich co-algebraic structure, starting from the fact that the based space $S^1$ is an H-cogroup.
The description of this structure on loop spaces has been the very motivation for the introduction of the notion of operad and algebra over an operad in (May).
An important theoretical consideration is when an H-space, and particularly one having the type of a CW-complex, has the homotopy type of a loop space of another CW-complex: $X \simeq \Omega Y$. In this circumstance, one calls $Y$ a delooping of $X$; an important example is where $X$ carries a topological group structure $G$, and $Y$ is the classifying space of $G$.
The most basic fact about deloopings is the shift in homotopy groups:
which follows straight from the adjunction $S \dashv \Omega$ plus the fact that the suspension of $S^n$ is $S^{n+1}$. (This isomorphism needs to be developed at greater length.)
The modern study of the question “when can an H-space be delooped?” was inaugurated by Jim Stasheff. The basic theorem is as follows (all spaces assumed to be CW-complexes):
An H-space $X$ admits a delooping if and only if the monoid $\pi_0(X)$ induced from the H-space structure is a group, and the H-space $X$ structure can be extended to a structure of algebra over an operad over Stasheff‘s A-∞ operad $K$.
This is due to (Stasheff). The analogous statement holds true in every (∞,1)-topos other than Top. Details on this more general statement are at loop space object and at groupoid object in an (∞,1)-category.
Let the space $X$ be locally 0-connected and semi-locally 1-connected (i.e. it admits a universal covering space). The loop space $\Omega X$ for any basepoint is locally path connected, as is the free loop space $X^{S^1}$. If $X$ is locally 1-connected and admits a basis of open sets $U$ such that $\pi_2(U) \to \pi_2(X)$ is the zero map, then $\Omega X$ is locally 0-connected and semi-locally 1-connected, and so admits a universal covering space.
In general, if $X$ is locally $n$-connected, $\Omega X$ is locally $(n-1)$-connected. This process can obviously be iterated up to $n$ times, so that $\Omega^n X$ is locally 0-connected. This can be weakened to locally $(n-1)$-connected and semi-locally $n$-connected: this is just like the $n=1$ case but replacing $\pi_1$ with $\pi_n$ (as was done in the previous paragraph with $\pi_2$). We will actually define a space to be semi-locally $n$-connected to include the condition that it is locally $(n-1)$-connected. This result was proved for more general mapping spaces $X^P$ and various subspaces when $X$ is Hausdorff and $P$ a finite polyhedron in (Wada) but a much simpler and direct proof for general $X$ and $P = I$ or $P= S^1$ is possible.
The fundamental $n$-groupoid of a space $X$ (Trimblean for choice) can be topologised to be an internal $n$-groupoid in $\Top$ when $X$ is semi-locally $n$-connected. Furthermore, the homotopy groups of the $n$-groupoid, a priori topological groups, are discrete.
For $n=2$, this is in David Roberts's thesis. For $n=1$, it has been known for ages and is in Ronnie Brown's topology textbook.
There is a Quillen equivalence
between the model structure on simplicial groups and the model structure on reduced simplicial sets, thus exhibiting both of these as models for infinity-groups (Kan 58). Its left adjoint $G$, the simplicial loop space construction, is a concrete model for the loop space construction with values in simplicial groups.
See also simplicial group and groupoid object in an (∞,1)-category for more details.
Daniel Kan, On homotopy theory and c.s.s. groups, Ann. of Math. 68 (1958), 38-53
Jim Stasheff, Homotopy associative $H$-spaces I, II, Trans. Amer. Math. Soc. 108, 1963, 275-312
Peter May, The geometry of iterated loop spaces Lecture Notes in Mathematics 271 (1970) (pdf)
H. Wada, Local connectivity of mapping spaces, Duke Mathematical Journal, vol ? (1955) pp 419-425
The simplicial loop group functor is discussed in chapter V, section 5 of
See also the references at looping and delooping.
Last revised on April 13, 2018 at 01:29:56. See the history of this page for a list of all contributions to it.