codiscrete space




Given a category SpSp of spaces equipped with a forgetful functor Γ:SpSet\Gamma : Sp \to Set to Set thought of as producing for each space its underlying set of points, a codiscrete space (codiscrete object) Codisc(S)Codisc(S) on a set SS is, if it exists, the image under the right adjoint Codisc:SetSpCodisc : Set \to Sp of Γ\Gamma.

Sometimes the codiscrete topology is also called the chaotic topology.

The dual concept is that of discrete space. For their relation see at discrete and codiscrete topology.


Codiscrete topological spaces

For Γ:TopSet\Gamma : Top \to Set the obvious forgetful functor from Top, a codiscrete space is a set with codiscrete topology.

Codiscrete cohesive spaces

A general axiomatization of the notion of space is as an object in a cohesive topos. This comes by definition with an underlying-set-functor (or similar) and a left adjoint that produces discrete cohesive structure. See there for details.


The terminology chaotic topology is motivated (see also at chaos) in

  • William Lawvere, Functorial remarks on the general concept of chaos IMA preprint #87, 1984 (pdf)

via footnote 3 in

  • William Lawvere, Categories of spaces may not be generalized spaces, as exemplified by directed graphs, preprint, State University of New York at Buffalo, (1986) Reprints in Theory and Applications of Categories, No. 9, 2005, pp. 1–7 (tac:tr9, pdf)

and appears for instance in

Last revised on May 27, 2019 at 14:07:07. See the history of this page for a list of all contributions to it.