physics, mathematical physics, philosophy of physics

Surveys, textbooks and lecture notes

theory (physics), model (physics)

experiment, measurement, computable physics



In physics and in the theory of dynamical systems (deterministic, stochastic, quantum, autonomous, nonautonomous, open, closed, discrete, continuous, with finite or infinite number of degrees of freedom…), an observable is a quantity in some theoretical framework whose value can be measured and observed in principle. Any good theoretical framework of physical phenomena should come with carefully established notion of an observable.

In classical physics

In classical mechanics an observable is any smooth function on the phase space of the system, and of time. The value of the observable is just the value of the function for fixed argument.

In quantum physics

In quantum mechanics an observable is a Hermitean operator on the physical Hilbert space of the theory. See quantum observable for more details.

In this case, one distinguishes the concepts of the expectation value of the observable and the concept of the measured value; they are evaluated in some state of the system. The expectation value can be taken in any state of the system, while the measured value is always in some eigenstate of the observable operator. The process of measurement results in the quantum mechanical collapse or reduction, in which the system passes to an eigenstate of the measured operator. The probability of taking a given eigenstate depends on the the transition matrix element from the previously prepared state to the given eigenstate.

In quantum field theory

In relativistic quantum mechanics and relativistic quantum field theory the question of observables is more complicated: issues like causality and superselection sectors are involved.


In the AQFT approach to quantum field theory the observables are the very starting point of the theory: At the beginning one is handed an abstract C *C^*-algebra CC, see C-star algebra (to be more precise: a net of such algebras). The selfadjoined elements of the algebras of the net are defined to be the observables of the theory.

duality between algebra and geometry in physics:

Poisson algebraPoisson manifold
deformation quantizationgeometric quantization
algebra of observablesspace of states
Heisenberg pictureSchrödinger picture
higher algebrahigher geometry
Poisson n-algebran-plectic manifold
En-algebrashigher symplectic geometry
BD-BV quantizationhigher geometric quantization
factorization algebra of observablesextended quantum field theory
factorization homologycobordism representation

Revised on January 7, 2014 03:35:54 by Urs Schreiber (