THE C*-ALGEBRAIC FORMALISM OF QUANTUM MECHANICS

JONATHAN JAMES GLEASON

ABSTRACT. In this paper, by examining the more tangible, more physically
intuitive classical mechanics, we aim to motivate more natural axioms of quan-
tum mechanics than those usually given in terms of Hilbert spaces. Specifically,
we plan to replace the assumptions that observable are self-adjoint operators
on a separable Hilbert space and states are normalized vectors in that Hilbert
space with more natural assumptions about the observables and states in terms
of C*-algebras. Then, with these assumptions in place, we plan to derive the
aforementioned assumptions about observables and states in terms of Hilbert
spaces from our new assumptions about observables and states in terms of
C*-algebras.
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1. INTRODUCTION

If you are familiar with the usual mathematical formulation of quantum mechan-
ics (i.e., the states are elements of a separable Hilbert space and the observables
self-adjoint linear operators on that space), then you have certainly realized that
this mathematical formulation is starkly different from the mathematical formula-
tion used in Classical Mechanics. In classical mechanics, at a very early stage one
is usually introduced to the Newtonian formalism of classical mechanics, and as the
student progresses through his or her study of physics, in particular mechanics, they
are eventually introduced to the Hamiltonian formalism of classical mechanics and
they are shown that this formalism is in fact equivalent to the Newtonian formalism.
I see this development as rather aesthetic in nature, as opposed to what is usually
done with quantum mechanics: we start with very intuitive physical axioms of a
theory (those in the Newtonian formalism), and eventually these laws are shown
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to be equivalent to the more mathematically convenient Hamiltonian formalism.
However, as is usually done with quantum mechanics, we immediately begin by
introducing the typical axioms (i.e., where states are elements of a Hilbert space
and observables are self-adjoint operators on that space), which, while mathemati-
cally convenient, they have absolutely no physical intuitive justification whatsoever.
I view this as a significant problem.

In this paper, I aim to introduce equivalent axioms of quantum mechanics, which
are much more natural than the axioms usually taken. To motivate these more
natural axioms, we shall first examine the mathematical formalism of classical me-
chanics. In particular, we shall prove results about the observables and states in
classical mechanics. We then examine these results about observables and states to
determine why these results are not in agreement with experimental observation.
Once it is determined why this characterization of states and observables is not
compatible with our physical world, we take these results about observables and
states from classical mechanics, and modify them just slightly so as to be compat-
ible with the physical laws that govern our world, and then taking the resulting
statements as axioms of quantum theory. Once we have those axioms in place, we
will show that these axioms actually imply that our observables are the self-adjoint
operators on some separable Hilbert space and that states are normalized elements
in that Hilbert space.

2. A BRIEF LOOK AT CLASSICAL MECHANICS

In order to motivate more natural axioms of a quantum theory (as mentioned in
the abstract), I first wish to examine (superficially) the mathematical formulation
of classical mechanics (in the Hamiltonian sense). In any theory of mechanics, we
must come to grips with two ubiquitous concepts: the notion of a state and the
notion of an observable.

In Hamiltonian mechanics, we describe the state of a system by an point (g, p)!
in a two dimensional symplectic manifold M, known as phase space (usually, we
identify the classical system with phase space itself). Now, in all real physical
systems, a particles position and momentum must remain bounded, and hence, for
the remainder of the paper, we shall assume that M is compact.

It is an experimental fact that we can never measure something with infinite
precision; however, there are such things that we can, in principle, measure to an
arbitrary precise degree. We call such things classical observables.

We would like to come up with a mathematically precise, physically motivated
way to characterize these classical observables. A first natural requirement is that
observables depend on the state of the system, that is, observables better be func-
tions of ¢ and p. Secondly, we better require that these functions be real-valued.
Thirdly, we must require that there is some way to make the error, when we mea-
sure an observable in the laboratory, arbitrarily small. Let us assume (by virtue of
experimental fact, in the classical realm of course), that we can always measure g
and p arbitrarily precisely.? Now, say I want to measurable something, namely a
real valued function of ¢ and p, call it f, and I want to measure f with error less

1We shall just restrict ourselves to the case where our system consists of one particle. For our
purposes, there is no loss of generality.

20f course, we mean to imply that the measurements of ¢ and p are simultaneous, which, in
classical mechanics, is perfectly acceptable.
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than some € > 0. Now, I know that I can make the error in ¢ and p arbitrarily
small, so, if there is some maximum error in ¢ and p, call it §, so that when I plug
in my measured values of ¢ and p into f, my experimental value of f will be within
¢ of the true value of f, then f will be observable. But of course, this is just the
definition of a continuous function! Thus, the natural definition for an observables
in classical mechanics can be stated as follows:

Definition 2.1 (Classical Observables). The classical observables on M are exactly
the continuous real-valued functions on M.

Hereafter, we shall simply denote the set of all observables on M as O =
C%(M,R). Now that we have a concrete way of viewing observables on M, we
can define some obvious structure:

Definition 2.2. Let S = (p,q) € M, f,g € O, and a € R. Then, define

(1) (f+9)(S) = f(S) +9(5)
(2) (af)(S) =af(S)
(3) (f9)(S) = f(S)g(S)

@) £l =sup {|f(S)]]S = (p,q) € M}
(5) (f)(S)=f(9)

With these simple definitions, we have the following theorem:

Theorem 2.1 (Properties of Classical Observables). The set of observables O of
a classical system are exactly the self-adjoint elements of a separable commutative
unital C*-algebra A.

Proof. STEP 1: CONSTRUCT \A.
Define A = C° (M, C) and equip A with the operations given in Definition 2.2.
STEP 2: RELEGATE THE TRIVIAL WORK TO THE READER.
Except for proving that A is separable and complete, everything is just a matter of
checking and we leave it to the reader.
STEP 3: FIND THE LIMIT OF A CAUCHY SEQUENCE.
To prove that A is complete, let f,, € A be a Cauchy sequence. It follows that, for
each x € M, f,(x) is Cauchy in C. But C is complete, so define f : M — C such
that f(z) = lim f,(z). We now show that f,, converges to f. Let ¢ > 0, and choose
N'" €N, so that if n > m > N’, it follows that || f.(z) — fm(2)| < § for all z € M.
Then, pick N > N so that whenever n > N, it follows that || fas(wo) — f(z0)|| < §
for a fixed xg € M. Then, whenever n > N,

[f (o) = fnlzo)l < [fn(zo) — [ (zo)| + [ fn (o) — flxo)| <e.

And so f, converges to f.

STEP 4: SHOW THE LIMIT OF A CAUCHY SEQUENCE IS CONTINUOUS.
To prove f is continuous, fix xg € M, let € > 0, and choose N € N so that whenever
n > N, it follows that |f,(z) — f(x)] < § for all z € M. Then, let n > N, and
choose § > 0 so that whenever d(z,z9) < 8, it follows that | f,(z) — fn(zo)| < 5.
Then, whenever d(z,z¢) < J, it follows that

|f(2) = f(zo)| < [f(2) = fu(@)| + [fn(x) = fr(zo)| + | fu(z0) — f(z0)] <&
Thus, f € A, and so A is complete.

3Here, d is the metric on M.
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STEP 5: PROVE THAT A IS SEPARABLE.
By the Stone-Weierstrass Theorem?, the set of all polynomials in ¢ and p with
coeflicients with rational real and imaginary part form a countable dense subset of
A, and hence A is separable. ([l

This theorem will serve as our guide for axiomizing quantum mechanics for the
remainder of the paper. Eventually, we will take the above theorem (with a slight
modification) as an aziom of the observables of quantum mechanics.

Now we wish to do something similar with the states of a classical system. That
is to say, we would like to examine the mathematical description of states in classical
mechanics, and arrive at a result that we can hopefully take as an axiom for our
theory of quantum mechanics. There is a natural way of viewing states in a classical
system as linear functionals on O.

Definition 2.3. Let S = (p,q) € M be a state. Then, we define S : A — C such
that, for f € A:

S(f) = f(S)

Note that, we will not distinguish between classical states and the corresponding
linear functional, which we also refer to as states; which one we are referring to will
be clear from context.

It is easy to prove some trivial results about these states:

Theorem 2.2 (Properties of Classical States). Let S € M be a state. Then,
S A — C is normalized positive linear functional on A.

Proof. Except normalization, these properties are all trivial to check. We note first
that

S]] = sup {[S(HIT /I =1} = [S(1)] =1.
Secondly, for f € A,

IS(HI = 1F(S)] < sup{[f(S)[|S € M} =[£Il

and so ||S|| < 1, from which it follows that ||S|| = 1, and hence S is normalized. O

At this point, we have fully characterized both the observables and states in
classical mechanics. The characterization of the observables is given in Theorem
2.1 and the characterization of the states is given in Theorem 2.2. The idea now
is to examine Theorems 1.1 and 1.2 and determine what it is about them that
is incompatible with quantum mechanics, and to figure out in what way we can
modify them so that they are consistent with the way in which our world actually
works.

3. WHAT’'S WRONG WITH CLASSICAL MECHANICS

Before we attempt at “fixing” our notions of states and observables for classical
mechanics, we first want to gain a more enlightening view of states when viewed as
linear functionals. A nice theorem, due to Riesz and Markov®, actually characterizes
these states very nicely:

4See [11], pg. 175.
5See [10] pg. 130.
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Theorem 3.1 (Riesz-Markov Theorem). Let X be a locally compact Hausdorff
space, and let S be a state on C° (X,R). Then, there exists a unique Borel proba-
bility measure us on X such that, for all f € C° (X,R)

S(f) = /X fus

When viewed in the light of the Riesz-Markov Theorem, it makes sense to view
S(f) as the expected value of the observable f in the state S. Physically, if we
measure f many times in the laboratory, and our particle is in the state S, then
our results should average to the value S(f). With this intuition in mind, it makes
sense to define the variance of an observable with respect to a state:

Definition 3.1 (Variance). Let S € M be a state and let f € O. Then, the
variance of f with respect to S is defined as

os(H)? =5 |(f = ()]

The reader may check, that for our states defined the way they are (i.e., S(f) =
f(S)), os(f) =0 for all f € O. Keeping our experimental knowledge of quantum
mechanics in mind, we know that this is not the case for all states. A good coun-
terexample is a particle in a square well. We would like to develop our theory so
that the ground “state” of this particle is to be considered a state in the mathemat-
ical theory. Unfortunately, with the ability of hindsight, we know that the variance
of the position in this state is nmonzero, and so if it is to be included in our notion
of a state, we must modify the classical definition of a state.

To include such states, we must now throw away our notion that our states are
points living in a symplectic manifold, in which case, it makes no sense to define
them as linear functionals of the form S(f) = f(5); however, it is natural, and still
mathematically possible, to take the set of all states of a quantum system to be the
normalized positive linear functionals on the algebra of observables (just as in the
classical case). We still have to come back to this and make this formal, however,
because we have not yet defined the notion of an observable for a quantum system.

Now for the observables. It is an experimental fact that

(3.1) 7s(p)os(a) 2 h

for any state S (we refer the reader to any standard textbook on quantum mechan-
ics, e.g., [12]). We would like such a result to be derivable from our mathematical
theory, and the following derivation suggests that we should take our algebra ob-
servables to be noncommutative, in contrast to the classical case.

For the following argument, we shall assume all the properties of the observables
stated in Theorem 2.1 except for commutativity. Let A, B € O and fix some state
S. Without loss of generality, we may assume that S(A) = S(B) = 0 (because we
could just as well take the observables A — S(A) and B — S(B)). Thus,

os(A)?0s(B)* = S(A%)S(B?)

Now, (¢ A+iB)* = aA—ifB for a, 8 € R (here, we have used the fact that A, B
are self-adjoint). So, by positivity of states, we have that

S ((aA —ifB)(aA+iBB)) = S(a®?A? +iaBAB — iaBA + 3* B?)
= S(A%)a® + S (i[A, B)) af + S(B*)5* > 0,
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where [A, B] = AB — BA is the commutator of A and B. Defining

M= ;5?1(642,)3]) %Séigéf ])} and a = [Z]

we see that the above inequality becomes
oaTMa >0

Thus, M is positive-definite, and hence
1
det M = S(A%)S(B?) — ZS(i[A,B])z >0

and hence 1
os(A)os(B) > B 1S ([A, B))|

We immediately see that the equation 3.1 is derivable from the above equation if
[¢,p] = ahl where o € C has norm 1. Of course, we must also have that (because
all observables must be self-adjoint)

¢ p]" = (ap — pa)" = pq — ap = —[q. p]

so a* = —a, so « = *i. In the end, it makes no difference whether we take
a =i or a = —i, so we might as well take @« = 9. Thus, we see that if our
theory takes the observables to be a noncommutative algebra, in particular, with
the relation [g,p] = ih1, then equation 3.1 will be derivable in this theory. This
suggests modifying Theorem 2.1 only slightly, removing the requirement that the
algebra be commutative, and taking this as a definition of observables in quantum
mechanics. We now make this formal:

Axiom 3.1 (Quantum Observables). The set of observables O of a quantum system
are exactly the self-adjoint elements of a separable (noncommutative) unital C*-
algebra A.

The reader should compare Axiom 3.1 to Theorem 2.1. Note how little we are
changing between the classical and quantum.

And using the justification given at the beginning of this section, we make the
following definition (which itself is just a slight modification of Theorem 2.2):

Axiom 3.2 (Quantum States). The set of states S of a quantum system is the set
of all positive linear functionals ¢ on A such that ¢ (1) = 1.6

So what have we accomplished so far? We first took a formulation of classi-
cal mechanics, namely Hamiltonian mechanics, which itself can be shown to be
equivalent to the extremely physically intuitive Newtonian formalism of mechanics,
and examined its mathematical properties, specifically its mathematical properties
relating to the classification of states and observables. We then took this mathe-
matical characterization of states and observables contained in Theorems 2.1 and
2.2, and tried to figure out why these characterizations are incompatible with what
we know about quantum mechanics. We eventually determined that to make these
characterizations of states and observables compatible with quantum mechanics
(with the benefit of hindsight of course), we should modify them slightly in the
manner presented in Axioms 3.1 and 3.2.

61n the classical case, we had that all our states were normalized. However, we do not wish to
assume this here, because this presupposes that our states are bounded, something we don’t need
to assume. This can actually be proven (see Proposition 4.2), as you will see later.
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What has been presented up to this point has mostly been all physical and
mathematical justification for taking as assumptions Axioms 3.1 and 3.2. We now
seek to build the theory of Quantum Mechanics from the ground up with these
two fundamental assumptions, assumptions that arise naturally from the study
of classical mechanics. Before we attempt to do this, however, a fair amount of
machinery is needed to be built up from the theories of C*-algebra and Hilbert
spaces. Instead of going into the details of how all this might be built up, we
simply state the results we shall need throughout the rest of the paper. The reader
who is already familiar with the theories of C*-algebras and Hilbert spaces, may
skip to section 6 and use the following two sections as reference when necessary.
The unfamiliar reader should be warned that the following two sections are not
intended to teach, but merely provide a library of useful results that will be used
within the paper.

4. THE THEORY OF C*-ALGEBRAS

Proposition 4.1. Let A be a unital C*-algebra and let v be a bounded linear
functional on A. Then, if ||1|| = (1), then for A € A, 1 (A*) =9 (A)".

Proposition 4.2. Let A be a unital C*-algebra and let ¢ be a linear functional on

A. Then, ¥ is positive iff ||| = ¢ (1).
Proposition 4.3. The states on a unital C*-algebra A separate the elements of A.

Proposition 4.4. Let A and B be unital C*-algebras, and let 7 : A — B be a
*-homomorphism. Then, |7 (A)|| < ||[A||. Furthermore, if ® is a *-isomorphism,
then, ||z (A)]| = [|A]l.

5. THE THEORY OF HILBERT SPACES

Notation. For the rest of the paper, unless otherwise stated, a sesquilinear form on
a vector space will be denoted (:|-), with the sesquilinear form conjugate linear in
the first coordinate.

Notation. We shall denote by BL(V') the set of all bounded linear operators on a
normed vector space V and by £L(V) the set of all linear operators on a vector space
V.

We would eventually like to prove that our observables are actually operators on
a Hilbert space. Before we attempt to do this, however, we better first show that
the bounded linear operators on a Hilbert space do in fact form a C*-algebra. To
do this, we must first come up with an involution to put on our space of operators.
The notion of “adjointing” is a natural one; however, we must first prove that this
notion is well-defined and makes sense:

Proposition 5.1. Let H be a Hilbert space. Then, for A € BL(H), there exists a
unique A* € BL(H) such that (Ay|x) = (y|A*x) for all x,y € H.

We now show that the set of all bounded operators on a Hilbert spaces, equipped
with pointwise addition and scalar multiplication, “adjointing” as the involution,
and the usual operator norm forms a C*-algebra:
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Proposition 5.2 (Bounded Operators on a Hilbert Space Form a C*-Algebra).
Let H be a Hilbert space. Then, BL(H) with pointwise addition, scalar multiplica-
tion, multiplication, the unary operation of “adjointing” for an involution, and the
operator norm make BL(H) into a C*-algebra.

Proposition 5.3 (Direct Sum of Hilbert Spaces). Let I be an index set and let
{H;|i € I} be a collection of Hilbert spaces, each with inner product (-|-);. Define
H to be the set of all functions f: I — |J,.; H; such that:

(1) Foriel, f(i) € H;.

(2) There is a countable set Sy C I such that f(I\Sy) = {0}

(3) Lies, IFG)| < oc.
Define addition and scalar multiplication pointwise, and define an inner product on
H such that, for f,g € H,

il

(Glf) = > (9@IfF(@),.

iESfUSg
Then, H with this inner product is a Hilbert space.

Notation. The set H in the above proof is usually denoted ®;c;H;. To denote an
element in @®;c;H;, we shall use the notation ®;¢crf; or ®ier f(i).

Proposition 5.4. Let H be an inner product space. Then, H is separable iff there
exists an orthonormal basis of H.

Proposition 5.5. Let H be a separable Hilbert space, let {ey|n € N} and
{fa|n € N} be countable orthonormal bases for H, which exist by virtue of Proposi-
tion 5.4, and let A € L(H) be trace-class. Then,

> (enlAen) =D (falAfy) < o0.
neN neN
Proposition 5.6. Let V' be a normed vector space, let W be a Banach space, and
lft U be a dense subspaceNOf V. Then, for A € BL(U, W), there exists a unique
A € BL(V,W) such that Aly = A.
6. QUANTUM MECHANICS FROM THE GROUND UP

Notation. For the duration of this section, unless otherwise noted, the symbols A,
O, and S have the meanings given to them in Axioms 3.1 and 3.2.

Before we begin, we first state three of the Dirac-Von Neumann Axioms of quan-
tum mechanics” that we shall derive from Axioms 3.1 and 3.2.

Statement 6.1 (Dirac-Von Neumann Axiom 1). To each quantum system, we
associate a separable Hilbert space H over C.

Statement 6.2 (Dirac-Von Neumann Axiom 2). Every observable is a self-adjoint
operator on H.

Statement 6.3 (Dirac-Von Neumann Axiom 3). The states of a quantum system
are exactly the positive operators of trace 1.

Before we get down to business, we first have to prove some elementary properties
of A and S using the firepower of the previous two sections.

7See [14], pg. 66.
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Lemma 6.1. S is a weak-* compact subset of A*.

Proof. We first show that S is closed in the weak-* topology. Let v, € S be a
sequence converging to 1) € A*. We wish to show that v is positive. Let A € A be
positive. Then, by definition of the weak-* topology,

lim e, (A) =9 (A).
But, each 9, (A) > 0, and hence ¥ (A) > 0 for every positive A € A. Thus, ¢ is
positive, and by the same reasoning ¢ (1) = lim,, (1) = 1, and hence § is closed.
However, S C {¢ € A*|||¢|| < 1} = B because ||| = 1 for ¢ € S. But, by the
Banach-Alaoglu Theorem®, B is compact in the weak-* topology. Thus, because S
is a closed subset of B, S must also be compact in the weak-* topology. O

Theorem 6.2. S is separable in the weak-* topology.

Proof. STEP 1: INTRODUCE NOTATION.
Because A is separable, we can pick a countable dense subset of 4. Enumerate
the elements in this countable dense subset A,. Define X = {¢ € A*|||¢| < 1},
D={z¢cCllz| <1}, and Y =[], D. Equip X with the weak-* topology.

STEP 2: DEFINE A HOMEOMORPHISM FROM X TO A SUBSET OF Y.
Define h : X — Y such that, for ¢ € X,

1 1
h((b): (HIAOHQS(AO)””JXMQS(AH)’) EY

STEP 3: PROVE h IS CONTINUOUS.
To prove that h is continuous, let ¢; € X be a net converging to ¢ € X. Then, by
definition of the weak-* topology, for n € N, ¢; (A,) converges to ¢ (A) in C, and
hence

1 1
h(¢1) <||A0||¢1(A0)a’ An||¢z(An)7>

converges to

(¢(A0)77¢(A1’1)7)
in Y. Thus, h is continuous.

STEP 4: PROVE h IS INJECTIVE.

Suppose h(¢) = h(1)). Then, ¢ (An) = ¢ (An) for all n € N. Now, we would like
to show that for an arbitrary A € A4, ¢ (A) =¥ (A). So let A € A, and by density,

let Ay, be a sequence of the Ay,s converging to A. Then, by continuity of ¢ and
1, we have that

dp(A)=2¢ (klim Ank) = klim ¢ (An,) = klim ¥ (Anp) =0 (klim Ank> =y (A).

Thus, ¢ = 1, and so h is injective.

STEP 5: PROVE h IS A HOMEOMORPHISM FROM X TO A SUBSPACE OF Y.
Now, h : X — h(X) is continuous and bijective, so to prove that h : X — h(X)
is a homeomorphism, it suffices to show that h~! : h(X) — X is continuous,
or equivalently, that h itself is closed. So let S C X be closed. Now, by the
Banach-Alaoglu Theorem?, X is compact, so S itself is compact. Now, because h is
continuous, it follows that h(S) is compact, and hence closed. Thus, h : X — h(X)
is a homeomorphism. Of course, h(X) is a metric space, so X is metrizable.

8See [9], pg. 66.
9See [9], pg. 66.
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STEP 6: CONCLUDE S IS SEPARABLE.
S C X, so S is of course also metrizable. Let d be the metric on S that induces the

weak-* topology on X. Define S,, = {Bi (d)]¢ € X}. Each S, is an open cover of

S. Now, by Lemma 6.1, S is compact, so for each S,,, we can pick a finite subcover
T,. For each T,,, let C,, be the set of the centers of the balls in T},. Note that each
C,, is finite. Define C' = U, cnC),. Because each C,, is finite, it follows that C is
at most countable. To show that C' is dense, let ¢ € S. We wish to construct a
sequence in C converging to ¢. Now, each T, covers X, so pick center of the open
ball that ¢ is contained in: call it ¢,. It follows that d(¢, ¢,) < %, and hence ¢,
converges to ¢. Thus, C is dense, and hence X is separable. O

Now, with the appropriate machinery in place, we plan to link our definitions of
quantum observables and states, which were given in terms of C*-algebras, to the
usual definitions of quantum observables and states, which are given in terms of
Hilbert spaces.

The following theorem is the key that links everything together, and it, along
with the Gelfand-Naimark Theorem, is one of the two primary results of this paper.

Theorem 6.3 (Gelfand-Naimark-Segal Theorem). Let ¢ € S. Then, there exists
a separable Hilbert space Hy, over C and a *-representation my, : A — BL(Hy) such
that:

(1) There exists a cyclic vector xy, € H of my.

(2) There is some positive ¥ € BL(H,) with Tr¥ = 1 such that, for A € A,
Y (A) = (xy|my (A)xy) = Tr [Ty (A)].

(8) Every *-representation w of A into a Hilbert space H over C with cyclic
vector x such that ¢ (A) = (x|m (A)x) for A € A is equivalent to my in
the sense that, for every such representation, there exists a unitary trans-
formation U : H — Hy such that Ux = xy and for A € A,y (A) =
Ur(A)U L

Proof. STEP 1: DEFINE A SEMIDEFINITE SESQUILINEAR FORM ON A.
We first wish to turn A into an inner product space. To do this, we first define a
sesquilinear form on A. Define, for A, B € A:

(A|B) =4 (A"B)

The reader may check that this is linear in the first argument, and conjugate sym-
metric (conjugate symmetry follows from Propositions 4.2 and 4.1). We would like
this to be an inner product; however, while it certainly is nonnegative, it isn’t nec-
essarily positive definite. To turn it into an inner product product, we plan to show
that the set

T ={B e AVA € 4, (A|B) = 0}

is a subspace of A. Then, we would like to show that the above defined sesquilinear
form is a well-defined inner product on the quotient space A/Z.

STEP 2: SHOW THAT A/Z IS AN INNER PRODUCT SPACE WITH THE INNER
PRODUCT (-|-) EXTENDED NATURALLY TO THE QUOTIENT SPACE.
The reader may check for themselves that 7 is in fact a left-sided ideal. Now, 7 is a
subspace of A, so if we temporarily forget about the extra structure on 4, we can
construct the quotient space A/Z by the usual means. We define the sesquilinear
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form on the quotient space in the obvious way: for A +Z,B+7 € A/Z, we define
(A+Z|B+1)=(A]B).

Once again, this is obviously linear in the first argument and conjugate symmetric,
so all that we have to prove is well-definedness and positive-definiteness. To prove
well-definedness, let A, B, C,D € A, and suppose A+Z = C+Z and B+Z = D+7.
Thus, we may write C = A +1; and D =B + I, for I;,I, € Z. Then,

(CID) = (A +L|B+1;) = (AB) + (I1|B) + (A[lz) + (I I2) = (A|B)
and so the sesquilinear form is well-defined. To prove positive-definiteness, suppose
(A+Z|A+7Z) = 0. It immediately follows that (A]A) = 0. By the Cauchy-
Schwarz Inequality (whose proof does not require positive-definiteness), for B € A

2
|(BJA)]” < (A]A) (B|B) =0,
and hence, for B € A, (B|JA) =0, and so A € Z. Thus, A +Z = 0+ 7 and hence
(+|-) is a well-defined inner product on A/Z. In fact, this actually proves that
I={A e Al(AlA) =0},

a result that we will use later in the proof.

STEP 3: COMPLETE A/Z TO A HILBERT SPACE, Hy.
This inner product induces a norm, and hence a metric on A/Z. Complete the
metric space A/Z in to a Hilbert space Hy, over C. We now proceed to construct
our representation.

STEP 4: CONSTRUCT A *-HOMOMORPHISM ¢ : A — BL (A/T).
We first define a *-homomorphism ¢ : A — BL (A/Z) defined such that, for A € A,
¢ sends A to the operator that sends B +7 € A/7 to AB + Z. That is,

$(A)(B+I)=AB+T.

We first prove well-definedness of the “operator” ¢ (A). Suppose B+Z = C +Z.
Then, C = B + I for some I € Z. Thus,

$(A)(C+I)=AC+T=AB+1)+7
=AB+AI+Z=AB+7=¢(A)(B+1),

where we have used the fact that 7 is a left-ideal so that we know AI € 7. The
reader may check that ¢ (A) is actually linear. To prove that ¢ (A) is bounded, it
suffices to show that the set {qu(A) B+D)|°|IB+Z| = 1} is bounded above,
so let B4+ 7 € A/Z be of norm 1. For convenience, let us first define

VB (A)=¢ (B"AB).

The reader may check that g is a positive linear functional on A (this follows
trivially from the fact that ¢ is a positive linear functional on A). Then,

¢ (A) (B +I)|° = |[AB +Z|* = (AB|AB) = ¢ (B*A*AB) = ¢ (A*A)
< |¢nl |A*A] L =vs (1) A% = [|A]%,

where we have applied Proposition 4.2 and used the subscript A to denote the
norm on A that makes it into a C*-algebra, to distinguish it from the semi-norm
on A induced by the semi-definite sesquilinear form. Thus, ¢ (A) is well-defined
and ¢ (A) € BL(A/T).
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STEP 5: SHOW THAT ¢ IS ACTUALLY A *-HOMOMORPHISM.
To show that ¢ is a *-homomorphism, for A, B, C € A we see that

$(A+B)(C+T)=(A+B)C+Z=AC+BC+7T
=(AC+I)+(AB+I)=9¢(A)(C+I)+¢(B)(C+1I)
=(¢(A)+¢(B))(C+1I),
and so ¢ (A +B) = ¢ (A) + ¢ (B). Similarly, we obtain ¢ (AB) = ¢ (A) ¢ (B) and
¢ (1) = 1. To show that ¢ (A*) = ¢ (A)", we see that
(C+7Z|¢(A*) (B +1)) = (C+I|A*B +7) = (C/A*B) = 4 (C*A*B)
¥ ((AC)"B) = (AC/B) = (AC+ZI|B+1)
=(@A)(C+I)B+1I).

Thus, by Proposition 5.1, it follows that ¢ (A*) = ¢ (A)*. Thus, ¢ is a
*~homomorphism.

STEP 6: EXTEND ¢ TO A *-REPRESENTATION 7y, OF A.
Now, by the usual process of completion, A/7 is dense in Hy, thus, by Proposi-
tion 5.6, there exists a unique bounded linear operator, call it m,; (A), such that
7y (A) |4z = ¢ (A). This defines a function 7y : A — BL(Hy). It follows from
the fact that ¢ is a *-homomorphism that m is a *-representation.

STEP 7: CONSTRUCT THE CYCLIC VECTOR.
Define x4, =147 € Hy. Then,

7 (A)xy = {A+T|A € A} = A/T.

But, by the completion process, A/Z is dense in H, and so x, is a cyclic vector of
Tafy+
STEP 8: PROVE Hy, IS SEPARABLE.
Because A is separable, it follows that my (A) Xy is separable. But, my (A)xy is
dense in Hy, and hence H, is separable.

STEP 9: PROVE THE FIRST EQUALITY OF (2).
We see that, for A € A,

(xy[my (A)xy) = (L +Z|my (A) (14 1)) = (1+Z]A+T) = (1]A) = ¢ (17A)
=y (A).
and so the first equality of (2) is proved.
STEP 10: PROVE THE SECOND EQUALITY OF (2).

Because H,, is separable, by Proposition 5.4, Hy, has a countable orthonormal basis.
Denote the basis by {en|n € N}. Now, write

Xy = Z Cn€n

neN

for ¢, € C, and define ¥ € BL(H,) such that

(en|Tem) = Cn.
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It follows that

Y (A) = (Z Cm€m|my (A) (chen>> = <Z em| Y [eamy (A) e,,}>

meN neN meN neN

= <Z Cmemlcnmy (A) en)} =D [ (emlmy (A) en)]

meN neNmeN

= (em| > [ehenmy (A) en]ﬂ

meN

= (emlﬂw (A) (Z [Cincnen]>>] = l(emlry (A) Te)]

meN neN
=Tr [my (A) @] = Tr [¥my (A)].

Using the fact that ¢ (1) = 1, we easily see that Tr ¥ = 1. To prove that ¥ is
positive, we define B € BL(H) such that

*

c, iftm=1

0  otherwise |

(em|Ben) = {

It follows that
(en|B*Ben) = (Bey|Bey,) = (che1|c),e1) = ¢ cn,

and hence ¥ = B*B. Thus, ¥ is positive.
STEP 11: DEFINE THE UNITARY TRANSFORMATION OF PROPERTY (3) ON
7 (A) x.
Let H be a Hilbert space'? over C and let 7 : A — BL(H) be a *-representation of
A with cyclic vector x such that, for A € A,

¥ (A) = (x|7 (A)x).

We first define U : 7 (A)x — Hy and then aim to extend it uniquely to all of H
by Proposition 5.6. First of all, for v € 7 (A) x write v = 7 (A) x for some A € A.
Then, define
Uv="U (7 (A)x) = my (A) xy.
STEP 12: PROVE THIS TRANSFORMATION IS WELL-DEFINED.
We first show that U is well-defined, i.e., Uv does not depend on our choice of

A € A such that 7 (A)x = v because such an A might not be unique. So suppose
A’ € Ais such that 7 (A’)x = v. Tt follows that

U (ATA) = (x|r (ATA)x) = (x|m (A") 7 (A))x) = (x| (A") 7 (A) x)
= (x|m (A*A)x) = ¢ (A*A).
Similarly,
Y (A*A) =1 (A"A) = (A"A).
Thus,
(A-A'A-A) =y ((A-A) (A-A))
=1 (A*A) — ¢ (A*A") — ¢ (AA) + ¢ (AA) =0,

10The inner product on H will also be denoted (*]-). This should cause no confusion.
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and so A — A’ € 7. But then,
U(r(A)x) =7y (A)xy =A'+T=A+T=0U (x(A)x),

and so U is well-defined.
STEP 13: PROVE THIS TRANSFORMATION IS LINEAR AND BOUNDED. It is easy
to check that U is linear. To check that is is bounded, we see that

- 2
|0 (xA)%)|" = lims (A) %0 = A+ = (A +TIA +T) = (A]A)
=19 (A"A) = (x|7 (A"A)x) = (x|7 (A)" 7 (A)x)
= (m (A) x| (A)x) = |7 (A) x|,

and so U € BL (7 (A)x, Hy).

STEP 14: EXTEND THIS TRANSFORMATION TO ALL OF H.
Because 7 (A)x is dense in H, by Proposition 5.6, there exists a unique U €
BL(H, Hy) such that Ul|,4x = U.

STEP 15: PROVE THAT U IS UNITARY.
To prove U is injective, it suffices to show that Uv = 0 + Z implies v = 0 for
v € 7 (A)x by linearity of U, continuity of U, and denseness of 7 (A)x. So let
v em(A)x and write v=m (A)x for A € A. If Uv = 0, then

Ty (A)xy =A+T=0+71.
Thus, A € Z. So
0=(AlA) =9 (A"A) = (x|t (A"A)x) = (7 (A) x|m (A)x) = (v]v).
Thus, by positive-definiteness, v = 0, and hence U is injective.
To prove U is surjective, by linearity of U, continuity of U, denseness of 7y (A)x
in Hy, and denseness of 7 (A)x in H, it suffices to show that for w € my (A) xy,
there exists v € 7 (A) x,, such that Uv = w. Write w = my, (A) x4 € 7y (A) %y for
A. Then, pick v =7 (A)x € 7 (A)x. It is easy to show that Uv = w, and hence
U is surjective, and hence bijective.
To prove that U is unitary, it suffices to show that
(wlv) = (Uw|Uv)
for v,w € 7 (A)x, by density of 7 (A)x and continuity of U. Write v =7 (A)x
and w = 7 (B) x for A,B € A. Then,
(wlv) = (7 (B)x|7 (A)x) = (x|7 (B"A)x) = ¢ (B*A) = (B|A)
— (BHTIA+T) = (g (B) xplmy (A) x,)
= (U (r(B)x)|U (7 (A)x)) = (Uw|Uv).

Thus, U is a unitary transformation.

STEP 16: PROVE U SATISFIES THE PROPERTIES LISTED IN (3)
We see that

Ux=U(m(1))x =my (1) Xy = Xy.
Let B+Z € A/Z. Then, for A € A
Ur(A)U ' (B+I)=Ur(A)7(B)x=Un (AB)x =7, (AB)xy
= my (A) Ty (B)xy = my (A) (B+1T).
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Thus, once again, by density, continuity, and linearity, it follows that
AcAmy(A)=Ur(A)U .
This completes the proof. (I

Now, with the Gelfand-Naimark-Segal Theorem in place, we are finally ready to
prove the theorem that gives us the three Dirac-von Neumann axioms stated at the
beginning of this section: the Gelfand-Naimark Theorem.

Theorem 6.4 (Gelfand-Naimark Theorem). There exists a separable Hilbert space
H over C such that:

(1) There exists an isometric *-isomorphism w: A — H.
(2) v € S iff there exists a positive ¥ € BL(H) such that Tr¥ = 1 and
¥ (A) = Tr [Ur (A))].

Proof. STEP 1: CONSTRUCT H.
By Theorem 6.2, there is a countable subset F of S that is dense in S in the weak-*
topology. By the Gelfand-Naimark-Segal Theorem, for each i) € F, there exists a
*-representation 7y into a Hilbert space Hy, satisfying properties (1), (2), and (3)
of Theorem 6.3. Denote the cyclic vector of 7y by xy as in Theorem 6.3. Define
H - @ng:Hd,ll.
STEP 2: PROVE H 1S SEPARABLE.
By the Gelfand-Naimark-Segal Theorem, each Hy, is separable, so because there are
countably many Hys, and each Hy is separable, it follows that H itself is separable.
STEP 3: CONSTRUCT THE ISOMETRIC *-ISOMORPHISM.
Define 7 : A — BL(H) such that 7 (A) is an operator on H that sends @yecrvy € H
to Gyer [71'1/, (A) Vw} € H. That is,

T(A) | P v | = P lry (A) vyl

peF peF

STEP 4: PROVE THAT 7 (A) IS LINEAR.
It is easy to check linearity:

TA) | B ve+ P wy | =7A) | B vy + wyl

peF peF PYeF

=P [my (A) (v + wy)]
peF

= P [y (A) vy + 1y (A) Wiy
peF

= P [ (A) vyl + €D [y (A) wy]
YeF YeEF

=7 (A) @Vw +7(A) @Ww

eF YEF

You can check homogeneity similarly.

Hgee Proposition 5.3 and Definition 8.15.
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STEP 5: PROVE THAT 7 IS A *~-HOMOMORPHISM.
We leave it to the reader that 7 respects addition. For multiplication, we have

m(AB) [ @ vy | = P [ry (AB) vy] = @B [ry (A) 7wy (B) vy

PYEF YEF YeF

=m(A) | D Imy (A)vy] | = (A)7(B) | D ve

YeEF YeEF

And for involution:

D wulr (A) [ D v

YEF YeEF

B wul P [y (A7) vy

peF peF

B wyl P (7o (A) vy ]

peF peF

= [(lem (A)” Vw)w}

N~

I
N
=
<
>z
g
=
<
<

Thus, by Proposition 5.1, 7 (A*) = 7 (A)", and hence 7 is a *-homomorphism.
STEP 6: PROVE THAT 7 (A) IS BOUNDED
To prove that 7 (A) is bounded, we see that

2 2
T(A) | P ve ||| =B e @)vil]| =D lIms (A) vl
PeEF PYeF PeF
2
< AP Ivel* = 1A | €D vl -
YeF YeF

where we have applied Proposition 4.4. Thus, 7 (A) € BL(H).

STEP 7: PROVE THAT F SEPARATES ELEMENTS IN A.
We now show that F separates elements in 4. Equivalently, we may show that
for nonzero A € A, there exists a 1) € F such that ¢ (A) # 0. So let A € A be
nonzero. Now, by Proposition 4.3, there exists ¢» € S such that ¢ (A) # 0. Now,
because F is dense in S in the weak-* topology, we can find a sequence ¢,, € F
such that 1, (A) converges to ¢ (A) # 0. Thus, we can find some N so that

[on (A) =y (A)] <o (A)],
and hence ¥ (A) # 0. Thus, F separates the elements of A.
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STEP 8: PROVE THAT 7 IS INJECTIVE.
Because 7 is linear, to prove 7 is injective, it suffices to show that 7 (A) = 0 implies
A = 0. So suppose 7 (A) = 0. This implies that each m; (A) = 0. We proceed
by contradiction: suppose A # 0. Then, because F separates the elements of A,
there is some 1 € F such that

07 ¥ (A) = (xy|my (A)xy) = (x4/0) = 0

a contradiction. Thus, 7 is injective, and hence 7 : 4 — 7 (A) is a *-isomorphism.

STEP 8: PROVE THAT ¢ IS AN ISOMETRY.
Because 7 is a *-isomorphism, by Proposition 4.4, ||7 (A)| = ||A[. Thus, 7 (A) is a
C*-subalgebra of BL(H), with H separable, and 7 : A — 7 (A) is an *-isomorphic
isometry.

STEP 9: PROVE (2).
It is easy to verify that if ¥ € BL(H) is positive Tr ¥ = 1, then Tr [¥7 (A)] defines
a state on A. To prove the other direction, let ¢ € S and let 9, be a sequence in F
converging to ¢ in the weak-* topology. Now, for each 1,,, define ¥,, € BL(H) such
that ¥, maps every vector in Hy for ¢ € F not equal to 1, to 0 and agrees with
the positive operator given in (2) of the Gelfand-Naimark-Segal Theorem on Hy,,.
It is easy to check that W, is positive, Tr ¥,, = 1, and Tr [¥, 7 (A)] = ¢, (A).
Thus, if we define ¥ to be the limit of ¥, we have that

¥ (A) = lim i, (A) = Tr [W,7 (A)] = Tr [¥r (A)).

Similarly, we also have that Tr ¥ = 1 and that W is positive.
This completes the proof. [

Thus, finally, we have proven, from our C*-algebraic axioms of quantum me-
chanics given in Axioms 3.1 and 3.2, that: to every quantum system there is an
associated separable Hilbert space, the observables are the self-adjoint operators on
this space, and that the states are positive operators of trace 1.

7. CLOSING COMMENTS

A little should be said about this last statement, namely, the identification of
states with positive operators of trace 1, as this is not the typical formulation of
states. Although we do not have room to do so here, one can define the notion of
a pure state, and then, prove that every pure state is a projection operator onto a
one dimensional subspace. Thus, we can identify the pure states with elements in
the Hilbert space, that is, we identify the pure state with the element in the Hilbert
space of norm 1 contained in the one dimensional subspace the operator projects
onto. This is the usual presentation of states in quantum mechanics; however, as it
turns out, the manner of looking at states in the Hilbert space formulation given in
Statement 6.3 is more mathematically convenient, and essentially the same as the
usual presentation when the state is a pure state.

The reader should take note that this is far from a complete treatment. For one
thing, there are still three other Dirac-von Neumann axioms (see [14], pgs. 66-73)
that need to be proven from equivalent axioms in terms of C*-algebra. In fact, it is
clear from their statement, that we will actually need to assume more than we have if
we wish to prove them. This, however, should not be seen as a problem. One should
not expect to be able to derive all of quantum mechanics from two relatively simple
axioms. However, I personally know of no natural axioms (although I'm sure they
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exist) that would fit nicely into our C*-algebraic framework of quantum mechanics
that would make the remaining three Dirac-von Neumann axioms provable. The
second thing the reader should take note of is that, essentially, we have only outlined
the general mathematical framework of quantum mechanics. In particular, we have
not axiomized, for example, the canonical commutation relation, or equivalent. Of
course, one would need to assume the canonical commutation relation in some form,
or an equivalent statement, if they wished to develop all of quantum mechanics.
We have not implemented this assumption in our axiomatic formulation for the
same reason we have not assumed axioms that make the remaining three Dirac-von
Neumann axioms provable: it was just simply not the purpose of this paper. Thus,
the work contained in this paper is far from a complete treatment: three Dirac-von
Neumann axioms remain to be proven, and the canonical commutation relation
was not implemented in the theory. Nevertheless, it is the author’s opinion that
the ability to prove three of the Dirac-von Neumann axioms from extremely natural
axioms taken from a study of classical mechanics is quite aesthetically pleasing.

8. APPENDIX: DEFINITIONS

I have decided to relegate most definitions to this appendix, with the idea in
mind that most of the readers are probably familiar with most of the following
definitions and it is best not to break the flow of the paper to present a definition
the reader is probably already familiar with. In any case, most objects I use in the
paper are defined below (in alphabetical order), so that the unfamiliar reader may
reference them when needed.

Definition 8.1 (*-Algebra). A *-algebra an associative algebra A over C equipped
with a unary operation * : 4 — A such that for A,B € A and a € C:
(i) (A+B)" = A*+B*
(ii) (AB)" = B*A*
(iii) (aA)" = a*A*
iv) (A")"=A
Definition 8.2 (*-Homomorphism). A *-homomorphism is an algebra homomor-

phism ¢ : A — B between two (unital) *-algebras A and B such that for A €
Ao (AY) = (A)".

Definition 8.3 (*-Isomorphism). A *-isomorphism is a bijective *-homomorphism.

* *

Definition 8.4 (*-Representation). A *-representation of a *-algebra A is a *-
homomorphism from A to the *-algebra of bounded operators on a Hilbert space.

Notation. We will typically use the notation BL(V) to denote the C*-algebra'? of
bounded operators on a normed vector space V.

Definition 8.5 (Adjoint). Let H be a Hilbert space over C and let A € BL(H).
Then, the adjoint of A, denoted A*, is the unique bounded linear operator on H,
whose existence is guaranteed by Proposition 5.1, such that (Ay|x) = (y|A*x) for
all x,y € H.

Definition 8.6 (Algebra). An algebra is a vector space A over a field F with an
additional binary operation - : A x A — A such that for A,B,C € A and o, 5 € A:

1256 Proposition 5.2.
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(i) (Left Distributivity) A-(B4+C)=A-B+A-C
(ii) (Right Distributivity) (A+B)-C=A-C+B-C
(iii) (Compatibility with Scalars) («A) - (6B) = (a8) (A - B)

Notation. This new binary operation is typically called multiplication and is often
denoted by juxtaposition.

Definition 8.7 (Algebra Homomorphism). An algebra homomorphism is a function
¢ : A — B between two (unital) algebras A and B over a field F' such that for
A, BeAand a €F:

(i) ¢(A+B)=0(A)+¢(B)

(ii) ¢ (AB) = ¢ (A) ¢ (B)

(i) & (aA) = a6 (A)

(iv) (Only if A and B are unital) ¢ (14) = 13

Definition 8.8 (Algebra Isomorphism). A algebra isomorphism is a bijective al-
gebra homomorphism.

Definition 8.9 (Associative Algebra). We say that an algebra is associative iff the
multiplication is associative.

Definition 8.10 (Banach Algebra). A Banach algebra is an associative algebra A
over a normed field F' equipped with a norm [|-|| such that:

(i) (Completeness) The resulting normed linear space is complete.
(ii) (Compatibility with Norm) For A, B € A, |AB|| < ||A|||B].

Definition 8.11 (C*-Algebra). A C*-algebra is a *-algebra A that is also a Banach
algebra such that for A € A, [|AA*| = ||A|.

Definition 8.12 (Commutative Algebra). We say that an algebra is commutative
iff the multiplication is commutative.

Definition 8.13 (Compact Operator). Let V be a normed vector space and let
A € L(V). Then, we say that A is compact iff A is bounded and the image of
every bounded subset of V' under A is relatively compact.

Definition 8.14 (Cyclic Vector of a C*-Representation). Let A be a C*-algebra,
let H be a Hilbert space, and let 7 : A — BL(H) be a *-representation of A. Then,
we say that x € H is a cyclic vector of 7 iff the set {7 (A)x|A € A} =[r(A)]x is
dense in H.

Definition 8.15 (Direct Sum of Hilbert Spaces). Let I be an index set and let
{H;|i € I} be a collection of Hilbert spaces. Then, the Hilbert space constructed
in Proposition 5.3 is the direct sum of the collection of H;s.

Notation. For a collection {H;|i € I'}, we shall typically denote their direct sum as
@GierH;.

Definition 8.16 (Finite Rank Operator). Let V' be a vector space and let A €
L(V). Then, A is of finite rank iff the dimension of the range of A is finite.

Definition 8.17 (Generation of a C*-Algebra). Let A be a unital C*-algebra and
let S be a finite subset of A. Then, the C*-algebra generated by S is the closure of
the set of all polynomials of elements in S U S* equipped with the operations from
the original C*-algebra.
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Definition 8.18 (Ideal of an Algebra). Let A be an algebra. We say that a subset
ZI C Ais a left/right ideal iff T is a subspace of A (when considered just as a
vector space) and for A€Z and Be A, BAc€Z/AA €.

Definition 8.19 (Multiplicative Linear Functional). A multiplicative linear func-
tional on an algebra A over C is a algebra homomorphism from A to C.

Definition 8.20 (Normal Element). Let A be a *-algebra and let A € A. Then,
we say that A is normal iff A commutes with A*.

Definition 8.21 (Normalized). Let V be a normed vector space and let v € V.
Then, we say that v is normalized iff ||v| = 1.

Definition 8.22 (Positivity of an Element of a *-Algebra). Let A be a *-algebra.
Then, we say that A € A is positive iff A = B*B for some B € A.

Definition 8.23 (Positivity of a Linear Functional). Let .4 be a *-algebra an let
¢ : A — C be a linear functional. Then, we say that ¢ is positive iff ¢ (A) > 0 for
all positive A € A.

Definition 8.24 (Self-Adjoint). Let A be a *-algebra and let A € A. Then, we
say that A is self-adjoint iff A = A*.

Definition 8.25 (Spectrum). Let A be a unital algebra over C and let A € A.
Then, the spectrum of A, denoted o4 (A), is the set of complex numbers A such
that A — A1 is not invertible in A.

Notation. When it causes no confusion, we may omit the subscript on o4 (A).

Definition 8.26 (State). Let A be a normed *-algebra and let ¢ be a linear
functional on A. Then, we say that 1 is a state iff ¢ is positive and normalized.

Definition 8.27 (Trace). Let H be a separable inner product space and let A €
L(H) be trace-class. By Proposition 5.4, H has a countable orthonormal basis
{en|n € N}. Then, the trace of A is defined as )y (en|Aeyn), which is finite and
well-defined by Proposition 5.5.

Notation. For A € L(H) trace-class, we denote the trace of A by Tr A.

Definition 8.28 (Trace-Class). Let H be a separable inner product space and let
A € L(H). Then, we say that A is trace-class iff A = BC for Hilbert-Schmidt
operators B and C.

Definition 8.29 (Unital Algebra). We say that an algebra is unital iff there exists
a multiplicative identity.
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