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Abstract. The purpose of this paper is to walk the reader through a math-

ematical development of physics, motivating everything along the way, some-

times with physical arguments, sometimes with mathematical ones, starting
with Newtonian mechanics and ending with a modern axiomatization of quan-

tum mechanics. To achieve this goal, we introduce the notion of an F ∗-algebra

and prove several results about these objects that enable us to axiomatize
quantum mechanics using the language of F ∗-algebras.
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1. Introduction

As stated in the abstract, the purpose of this paper is to walk the reader through
a mathematical development of the physics. Furthermore, we aim to do this as
efficiently as possible, so that no more time is spent on a topic than is necessary
to motivate the next. The hope is that it will give a clear, intuitive picture, with
strong motivation throughout, of why physicists have chosen the path that they
have in “fixing” previous physical theories. Because of the nature of this paper,
it is inevitable that some topics will not feel fleshed out. I hope this doesn’t put
off too many readers, as such topics should be more thought of as mere “stepping
stones” in the context of this paper, as opposed to a topic of interest in its own
right.

A quick note on notation before we begin. For us, N will always contain 0. If
we wish to omit 0, we shall use the symbol Z+ for the set of positive integers. Let
V and W be normed linear spaces. Then, we shall denote by L[V,W ] the set of
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all closed1, densely-defined2 linear operators from V to W . Furthermore, we shall
denote by B[V,W ] the set of all bounded linear operators from V to W .

2. Newtonian Mechanics

2.1. Space-time. The first notion in classical mechanics we want to make precise
sense out of is space-time. In the same way that if one stands on the earth and
looks in all directions without traveling a great distance, it might be reasonable
to conclude (having never thought of something like a manifold before) that the
earth is flat, if you stand in one place and look at space all around you, it would
be reasonable to conclude that space if flat. Thus, it would be reasonable to take
as an assumption that space is R3.

However, let’s say that we perform some experiment, then travel around space,
stop, and perform the same experiment again. We will find that our results of
both experiments are identitcal, that is, we find that the world “looks the same”
regardless of where we are and in what direction we are looking3. Thus, we don’t
want any point in space to be particularly “special”. In R3, the origin plays a
special role, and so it would not be natural to define space to just be R3. To get
around this, we define the notion of affine space.

Definition 2.1 (Affine Space). Affine n-Space is a nonempty set S equipped with
a group action of Rn on S, written (p,v) 7→ p+v = v+p, such that for all p, q ∈ S,
there exists a unique v ∈ Rn such that p+ v = q.

The intuition here of course is that the elements of S are points in space and
that, while it doesn’t make sense to add two points together, it does make sense to
subtract two points, the difference of course being thought of as the displacement
between the two points or locations.

The observant reader probably noticed that we did not say “An affine n-space
is. . .” in our definition. By not wording the definition like this, we mean to imply
that affine n-space is somehow unique. This is indeed the case, but to say what we
mean by unique, we must first define an affine map (the mathematically mature
reader should be able to come up with these definitions and proofs on their own,
and if they wish to skip ahead, they should do so after the following remark on
notation).

Notation 2.2. Let S be affine n-space and let p, q ∈ S. Then, we shall denote the
unique v ∈ Rn such that p+ v = q by p− q.

Of course, in mathematics, whenever we define some sort of mathematical object,
we are also interested in maps between such objects that preserve the structure of
the objects:

Definition 2.3 (Affine Map). Let S and T be affine spaces of dimensions m and
n respectively and let f : S → T be a function. Then, f is an affine map from S to

T if and only if the map f̃ : Rm → Rn defined by f̃(p− q) = f(p)− f(q) is linear.

The reader should check the following:

1We need these operators to be closed so that A∗∗ = A.
2We need these operators to be densely-defined so that the notion of an adjoint makes sense.
3These two ideas are usually referred to as homogeneity and isotopy of space(-time).
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Fact 2.4. Let S and T be affine spaces of dimensions m and n respectively and let
f : S → T be an affine map. Then, for any v ∈ Rm, there exists p, q ∈ S such that

p − q = v and furthermore, f̃ (v) = f(p) − f(q) is independent of our choice of p
and q.

This fact essentially says that, when f̃ exists, it is everywhere-defined and well-
defined.

The reader should also check the following fact

Fact 2.5. Define a category A whose objects are affine spaces and whose morphisms
between two given affine spaces are the affine maps between the two affine spaces.
Then, A is indeed a category.

It then follows easily that

Fact 2.6. Let S and T be affine spaces of dimensions m and n respectively. Then,
S and T are isomorphic in A iff m = n.

One can easily check that A carries a product, whose definition should be obvious
to the reader (set-wise, the product is the Cartesian product and the group action
is component-wise).

Furthermore, in Newtonian mechanics, we view space and time independently of
one other. We can thus define space-time as follows:

Definition 2.7 ((Newtonian) Space-Time). Space is S, time is T , and space-time
is S × T where S is 3-dimensional affine space and T is 1-dimensional affine space.

Note that, once again, Fact 2.6 allows us to talk about 3-dimensional affine space
instead of a 3-dimensional affine space.

Definition 2.8 (Event). An event is an element of space-time.

Definition 2.9 (Time Difference). Let p and q be events in space-time. Then,
p − q ∈ R3 × R. The time difference between q and p, written ∆t(p − q), is
π2(p− q), where π2 : R3 × R→ R is the projection onto the 2nd-coordinate.

Definition 2.10 (Simultaneity). Let p and q be events in space-time. Then, we
say that p and q are simultaneous if and only if ∆t(p− q) = 0.

Furthermore, for events that are simultaneous, we would like to be able to talk
about the distance they are apart.

Definition 2.11 (Distance). Let p and q be simultaneous events in space-time.
Then, the distance from q to be p, written ∆s(p − q), is ‖π1(p− q)‖, where π1 :
R3×R→ R3 is the projection onto the 1st-coordinate and ‖·‖ is the usual Euclidean
norm in R3.

The ability to talk about time difference between events and distance between
simultaneous events now allows us to talk about the important notion of an inertial
frame:

Definition 2.12 (Inertial Frame). An inertial frame is a map from S × T to
R3 × R of the form h ≡ f × g where f : S → R3 and g : T → R are affine
isomorphisms such that ∆t(p− q) = π2 (h(p)− h(q)) for all p, q ∈ S × T and such
that ∆s(p− q) = ‖π1 (h(p)− h(q))‖ for p and q simultaneous.
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All this is saying is that h must be an affine isomorphism that preserves time
intervals, and whenever two events are simultaneous, g must preserve the distance
between them. In other words, a choice of inertial frame is essentially a choice of
coordinate system in space-time, with the requirement that our inertial observer is
not an idiot in the sense that he chooses coordinates that give incorrect results for
measurements of time differences and spatial displacements.

2.2. Mass and Force. We all have this intuitive idea of what mass is: it’s the
amount of “stuff” that makes up an object. From our everyday experience, we
expect that objects with a lot of “stuff” are going to be more resistant to movement
than objects with a lot less “stuff”. But unfortunately, this does not provide us
with a good definition of mass, because defining mass in terms of its resistance to
change in movement would give us a circular definition of force. We need to think
of something else.

We then come up with an idea to properly define the notion of mass. First of all,
we must choose a standard object that we shall arbitrarily declare to have one unit
of mass.4 Then, we pick an inertial reference frame in which this standard is at rest,
and we take the object whose mass we wish to measure and send it on a collision
course for the standard at a known speed v0. The faster the standard travels after
the impact, intuitively, the more “stuff” our object has. Conversely, the more our
object slows down after the collision (the difference between the initial velocity and
ending velocity), the less “stuff” we expect our object to have. It thus makes sense
to define the mass of our object to be

v′

v0 − v
units of mass,

where v′ is the speed of the standard and v is the speed of our object after the
collision. Note that, our intuition tells us that v should be less than v0, and hence
this quantity will always be positive. We note that it is an experimental fact that
this definition is independent of inertial frame.5

Now that we have established the physical meaning of mass, we may define what
it is we mean by a particle.

Definition 2.13 (Particle). A particle is a pair (x,m), where x is a smooth6 map
from T to S and m is a positive real number.

Note here that, for this to make sense, I am using the fact that our definition
of mass is independent of inertial frame, the intuition here of course being that x
is the path in space that the particle traces out and m is the mass of the particle.
For the purposes of this paper, we can consider classical mechanics to be the study
of finitely many particles in space-time. For some purposes, one needs to consider
“particles” which are not point particles. For example, the study of rigid body
motion in which “particles” can have an orientation in space-time is a common
subject in classical mechanics texts.

4There is actually a real-life object, known as the international prototype kilogram, that has
been arbitrarily declared to have a mass of 1 kg. To be fair, this is probably not the best definition

in the world we could have come up with, but for now, we’re stuck with it.
5Remember, we are currently working in the realm of classical mechanics, not special relativity

or otherwise, so statements I make such as these are made modulo special relativistic and quantum

mechaniccal subtleties.
6Affine spaces have a natural smooth manifold structure induced by the action of Rn.
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Let us now consider n particles (x1,m1) , . . . , (xn,mn) in space-time and choose
any inertial frame. Then, we may think of each xk as a function from R (thought of
as time) to R3 (thought of as space). We will not distinguish between this function
and the corresponding function from T to S, at least in terms of notation. Remem-
ber, for our purposes, the only things living in space-time are these n particles.
Thus, if something is to affect the movement of one of these particles, it must be
one of the other particles, or at least something produced by the existence of one
of the other particles. We thus define:

Definition 2.14 (Force). The force on particle k is a smooth function Fk : (TS)n×
T → TS.7

Intuitively, for each of the n particles, the force Fk is dependent on both the
particles’ position and velocity, and hence, is a function of the n-fold product of
TS. Furthermore, we allow Fk to also depend on time, which is the role of the
(n+ 1)st coordinate of the domain.

The obvious question arises: hows does force affect the movement of particles?
To answer this, let us perform a (thought) experiment. Let us attach a spring to
a wall and connect an object of known mass m1 to the end of the spring and pull
the spring a fixed difference away from the wall. The mass will accelerate, say
with an acceleration of a1. Now, let us take another object of mass, say, m2. If
we do the exact same thing, the “pull” of the spring should be the same because,
after all, it’s not as if it knows what is at the other end of the spring, and we will
record another acceleration, a2. It is an experimental fact that m1a1 = m2a2. This
thought experiment only dealt with things up to absolute value8; nevertheless, this
experiment can be modified to experimentally verify the general statement that is
Newton’s Second Law:

Axiom 2.15 (Newton’s Second Law). Let (x1,m1) , . . . , (xn,mn) be n particles in
space-time and pick any inertial frame. Then, for 1 ≤ k ≤ n,

Fk ((x1(t),v1(t)) , . . . , (xn(t),vn(t)) , t) = mk (xk(t),ak(t))

holds for all t ∈ R, where vk = ẋk and ak = v̇k.

A quick note on the notation here. Each pair (xi(t),vi(t)) and (xk(t),ak(t)) ∈
TS; however, after picking an inertial frame, as already mentioned, we can think
of each xi, vi, and ai as a smooth function from R into R3, and with this idea in
mind, Newton’s Second Law may be written as

Fk (x1(t), . . . ,xn(t),v1(t), . . . ,vn(t), t) = mkak(t),

which is perhaps more familiar and a little less tedious.
Partly to simplify notation and partly so we don’t have to continually worrying

about the fact that we are dealing with n particles we define

x = (x1, . . . ,xn) ∈ R3n,

F = (F1, . . . ,Fn) ∈ R3n,

7Here, TS is the tangent bundle of S.
8That is to say, our thought experiment proved nothing about the direction of the acceleration

of the force, although Newton’s Second Law does make an assertion about the relation of these
two directions (they’re the same).
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and

m =


m1I3 0 · · · 0

0 m2I3 · · · 0
...

...
. . .

...
0 0 · · · mnI3

 ,
where I3 is the 3 × 3 identity matrix. We also similarly define v = ẋ and a = v̇.
Then, Newton’s Second Law may be written as

F = ma,

which is even more familiar and a lot cleaner. Using this notation, we shall call F
a force acting on n particles with mass m.

2.3. States and Observables. The study of classical mechanics is not the study
of how to determine what the forces on particles are (in principle), but rather,
to determine, for a given force, what happens to our classical system. So, if we
ignore the problem of how to determine F, all of classical mechanics essentially
reduces to how to solve the above second-order ordinary differential equation (ODE)
for each xk. However, from the theory of ODEs, if for some t0 ∈ R, we know
x1(t0), . . . ,xn(t0),v1(t0), . . . ,vn(t0), then we can determine x1(t), . . . ,xn(t) for all
t.9 This information thus essentially encodes, at least in principle, everything we
would ever want to know about the system, which hence motivates our definition
of a state:

Definition 2.16 ((Newtonian) System). A Newtonian system of n particles is a
collection of n particles along with the forces acting on each.

Definition 2.17 ((Newtonian) State). The Newtonian state of a given n-particle
Newtonian system is a collection of n-elements of TS along with one element of T .

The intuition here being that the elements of TS encode the initial position and
velocities and the element of T encodes the time at which the n particles had these
positions and velocities. As just mentioned, if we know the state of the system,
picking an inertial frame reduces the problem of solving for the particles’ trajectories
for all time to solving a second-order ODE, which is now an initial-value problem
by virtue of knowing the state of the system, to which a unique solution exists for
all time by the theory of ODEs.

Now, it is an experimental fact that we can never measure something with infinite
precision; however, there are such things that we can, in principle, measure to an
arbitrarily precise degree. We call such things observables.

We would now like to come up with a mathematically precise way to characterize
these observables. A first natural requirement is that observables depend on the
state of the system, that is, observables better be functions of (TS)n × T , for a
system of n particles. Secondly, we better require that these functions be real-
valued. Thirdly, we must require that there is some way to make the error, when
we measure an observable in the laboratory, arbitrarily small. Let us assume (by
virtue of experimental fact, in the classical realm of course), that we can always

9The mathematical theorem only guarantees existence in an interval containing t0, but we

shall simply declare cases where we do not have existence for all time as unphysical. In any case,
these problems do not matter for the purpose of this paper.
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measure position, velocity, and time arbitrarily precisely.10 Now, say somebody
gives me a function on (TS)n × T , call it f , and would like me to measure f with
error less than some ε > 0. Now, I know that I can make the error in the positions,
velocities, and time arbitrarily small, so I think, if there is some maximum error in
the positions, velocities, and time, call it δ, so that when I plug in my measured
values for the positions, velocities, and time, my experimental value of f will be
within ε of the true value of f , then f will be observable. But of course, this is
just the definition of a continuous function! Thus, the natural definition for an
observable in classical mechanics can be stated as follows:

Definition 2.18 (Newtonian Observables). The Newtonian observables of a system
of n particles are exactly the continuous functions from (TS)n × T to R.

To simplify notation, we shall simply write M ≡ (TS)n × T . Furthermore, we
shall simply denote the set of all observables on M as O = C(M,R).

Theorem 2.19 (Properties of Classical Observables). The set of observables O of
a classical system is exactly the set of self-adjoint elements of a separable, commu-
tative, unital F ∗-algebra A.11

Proof. Take A = C(M,C). Equipping A with the usual addition, scalar multipli-
cation, multiplication, and complex conjugation as an involution turns A into a ∗-
algebra. Now, let {Kn|n ∈ N} be a sequence of compact sets such that Kn ⊆ Kn+1

and
⋃
n∈NKn = M . Then, we may define the seminorm pn by pn(f) = ‖f |Kn‖,

that is, pn is the usual supremum norm of f restricted to the compact set Kn. It is
easy to check that this structure turns A into an F ∗-algebra of which O is exactly
the set of self-adjoint elements. �

This is big time. Mathematically, it’s pretty trivial; however, this theorem will
serve as our guide for axiomatizing quantum mechanics. Eventually, we will take
the above theorem (with a slight modification) as an axiom of the observables in
quantum mechanics. A quick remark on notation before we continue: we will be
using the notation A = C(M,C) equipped with the structure noted in the above
proof that turns A into an F ∗-algebra.

Now we wish to do something similar with the states of a classical system. That
is to say, we would like to examine the mathematical description of states as given
above and arrive at a result that we can hopefully take as an axiom for our theory of
quantum mechanics. There is a natural way of viewing states in classical mechanics
as linear functionals on O.

Definition 2.20. Let x ∈M be a state. Then, we define x̂ : A → C such that, for
f ∈ A,

x̂(f) = f(x).

With this definition, it is easy to see that each state x induces a positive, multi-
plicative, unital linear functional x̂ on A, but not just any positive, multiplicative,
unital linear functional. Linear functionals of the form x̂ for x ∈M have the special
property that, for any inverse sequence {An|n ∈ N} of C∗-algebras converging to
A (in the sense of an inverse limit), we have that x̂ = π̂n(ψ) where πn is the map

10Of course, we mean to imply that the measurements of position and velocity are simultaneous,

which, in classical mechanics, is perfectly acceptable.
11See the Appendix for the definition of an F ∗-algebra.
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from A into An that makes A the inverse limit of the sequence {An|n ∈ N} and −̂
is the contravariant character functor. We will say that a linear functional of this
form is a restricted linear functional.12

Theorem 2.21 (Properties of Classical States). The map that sends x ∈ M to x̂
in A∗ is a homeomorphism onto the set of positive, multiplicative, unital, restricted
linear functionals of A.

Proof. Step 1: Note that every linear functional of the form x̂ is
positive, multiplicative, and unital.
Let x ∈M . We have already mentioned that it is easy to show that x̂ is a positive,

multiplicative, unital linear functional on Â.
Step 2: Show that every linear functional of the form x̂ is positive,

multiplicative, unital, and restricted.
To show that x̂ is restricted, let {An|n ∈ N} be an inverse sequence of C∗-algebras
such that A is the inverse limit of this sequence with maps πn : A → An. Because
the image of each πn is dense and A is commutative, it follows that each An must
be commutative. Similarly, because A is unital, it follows that each An must be
unital. Then, by the Commutative Gelfand-Naimark Theorem, it follows that An is
isomorphic to C(Kn) for some compact Hausdorff space Kn. Furthermore, because
A is separable, it follows that each C(Kn) is separable. The map from C (Kn+1)
into C(Kn) induces a map from the set of all positive, multiplicative, unital linear
functionals on C(Kn) into the set of all positive, multiplicative, unital linear func-
tionals on C (Kn+1), which is injective because the map from C (Kn+1) into C(Kn)
has dense image. Thus, by Lemma 5.21, this continuous injection gives us a con-
tinuous injection from Kn into Kn+1. Similarly, we also get continuous injections
from each Kn into M . Note that each of these maps must be a homeomorphisms
onto its image and so we identify each Kn as a subspace of M . It follows from the
universal property that M =

⋃
n∈NKn. Thus, x ∈ Kn for some n ∈ N, in which

case x̂ = π̂n (x̂), where on the right hand side we regard x̂ as a linear functional on
C(Kn). Thus, x̂ is restricited.

Step 3: Show that each positive, multiplicative, unital, restrictive
linear functional is of the form x̂ for some x ∈M .
Let ψ be a positive, multiplicative, unital, restrictive linear functional on A. By
Theorem 5.19, A is the inverse limit of some sequence of commutative, unital,
separable C∗-algebras. By the argument given in the previous step, this sequence
is of the form {C(Kn)|n ∈ N} for {Kn|n ∈ N} a sequence of increasing compact
sets such that

⋃
n∈NKn = M . Then, because ψ is restricited, ψ = π̂n(ψn) for some

positive, multiplicative, unital linear functional ψn on C(Kn). However, by the
previous lemma, ψn = x̂ for some x ∈ Kn, and hence ψ = x̂ for some x ∈M .

Step 4: Show that this map is injective.
M is normal, so continuous functions separate distinct points on M , so that the
map that sends x to x̂ is injective.

Step 5: Show that this map is continuous.
Let {xn|n ∈ N} be a sequence converging to x ∈M . Then, for f ∈ A, the sequence
{f(xn)|n ∈ N} converges to f(x), so by the definition of the weak-∗ topology, the
sequence {x̂n|n ∈ N} converges to x̂, and hence the map x 7→ x̂ is continuous.

12It turns out that every multiplicative, unital linear functional on A is restricted; however, for

quantum mechanical reasons, we will eventually want to remove the assumption of multiplicative,

in which case there will be such linear functionals that are not restricted.
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Step 6: Show that the inverse map is continuous.
Let I be a directed set and let {x̂i| i ∈ I} be a net of linear functionals converging
to another linear functional x̂.13 It follows that for every f ∈ A, {f(xi)| i ∈ I}
converges to f(x). However, for this to occur, it must be the case that {xi| i ∈ I}
converges to x, and hence the inverse map is continuous. Thus, the map that sends
x ∈ M to x̂ in A∗ is a homeomorphism onto the set of positive, multiplicative,
unital, restrictive linear functionals of A. �

At this point, we have fully characterized both the observables and states in
classical mechanics. The characterization of the observables is given in Theorem
2.19 and the characterization of the states is given in Theorem 2.21. The idea now
is to examine what’s wrong with Theorems 2.19 and 2.21, and to figure out in what
way we can modify them so that they are consistent with the way in which our
world actually works (up to quantum mechanical considerations).

3. From Classical to Quantum

Before we attempt at “fixing” our notions of states and observables for classical
mechanics, we first want to gain a more enlightening view of states when viewed as
linear functionals. A nice theorem, due to Riesz and Markov14, actually character-
izes these states very nicely:

Theorem 3.1 (Riesz-Markov Theorem). Let X be a locally compact, Hausdorff
space, and let ψ be a positive, unital linear functional on C(X,R). Then, there
exists a unique Borel probability measure µψ on X such that, for all f ∈ C(X,R),

ψ(f) =

∫
X

fdµψ.

When viewed in the light of the Riesz-Markov Theorem, it makes sense to view
ψ(f) as the expected value of the observable f in the state ψ. Physically, if we
measure f many times in the laboratory, and our particle is in the state ψ, the
our results should average to the value ψ(f). With this intuition in mind, it makes
sense to define the variance of an observable with respect to a state:

Definition 3.2 (Variance). Let x ∈ M be a state and let f ∈ O. Then, the
variance of f with respect to x is defined as

σx(f)2 ≡ x̂
[
(f − x̂(f))

2
]
.

The reader may check (it’s trivial) that, σx(f) = 0 for all f ∈ O. Keeping our
experimental knowledge of quantum mechanics in mind, we know that this is not
the case for all states. A simple counterexample is a particle an infinite square well.
We would like to develop our theory so that the ground “state” of this particle is to
be considered a state in the mathematical theory. Unfortunately, with the ability
of hindsight, we know that the variance of the position in this state is nonzero,
and so if it is to be included in our notion of a state, we must modify the classical
definition of a state to include it.

13Note that we have already shown that the image consists entirely of linear functionals of this
form. Furthermore, it is easy to check that the limit of a net of positive, multiplicative, unital
linear functionals must also be positive, multiplicative, and unital, and hence must also be of this

form.
14See [11], pg. 130.



10 JONATHAN GLEASON

To include such states, we must now throw away our notion that our states are
points living in a smooth manifold. However, it is natural, and still mathematically
possible, to take the set of all states of a quantum system to be the set of all positive,
multiplicative, unital, restricted linear functionals on the algebra of observables
(just as in the classical case). We still have to come back to this and make this
formal, however, because we have not yet defined the notion of an observable for a
quantum system.

Now for the observables. It is an experimental fact that

(3.3) σψ(p)σψ(x) ≥ ~
2

for any state ψ, where p = mv is the momentum of the particle and m is the mass of
the particle.15 We would like such a result to be derivable from our mathematical
theory, and the following derivation suggests that we should take our algebra of
observables to be noncommutative, in contrast to the classical case.

For the following argument, we shall assume all the properties of the observables
stated in Theorem 2.19 except for commutativity. Let A,B ∈ O and fix some state
ψ. Without loss of generality, we may assume that ψ(A) = ψ(B) = 0 (because we
could just as well take the observables A− ψ(A) and B − ψ(B)). Thus,

σψ(A)2σψ(B)2 = ψ(A2)ψ(B2).

Now, (αA + iβB)∗ = αA − iβB for α, β ∈ R (here, we have used the fact that A
and B are self-adjoint), so, by positivity of states, we have that

ψ ((αA− iβB)(αA+ iβB)) = ψ(α2A2 + iαβAB − iαβBA+ β2B2)

= ψ(A)2α2 + ψ (i[A,B])αβ + ψ(B2)β2 ≥ 0,

where [A,B] ≡ AB −BA is the commutator of A and B. Defining

M ≡
[

ψ(A2) 1
2ψ (i[A,B])

1
2ψ (i[A,B]) ψ(B2)

]
and v ≡

[
α
β

]
we see that the above inequality becomes

vTMv ≥ 0.

Thus, M is positive-definite, and hence

det[M ] = ψ(A2)ψ(B2) =
1

4
ψ (i[A,B])

2 ≥ 0,

and hence

σψ(A)σψ(B) ≥ 1

2
|ψ ([A,B])| .

We immediately see that the Equation (3.3) is derivable from the above equation
if [x, p] = α~ where α ∈ C has norm 1. Of course, we must also have that (because
all observables must be self-adjoint)

[x, p]∗ = (xp− px)∗ = px− xp = −[x, p],

so that α∗ = −α, so that α = ±i. In the end, it makes no difference whether we
take α = i or α − i, so we might as well take α = i. Thus, we see that if our
theory takes the observables to be a noncommutative algebra, in particular, with
the relation [x, p] = i~, then Equation (3.3) will be derivable in this theory. This
suggests modifying Theorem 2.19 only slightly, removing the requirement that the

15We refer the reader to any standard textbook on quantum mechanics, e.g., [13].
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algebra be commutative, and taking this as a definition of observables in quantum
mechanics. We now make this formal:

Axiom 3.4 (Quantum Observables). The set of observables O of a quantum system
is exactly the set of all self-adjoint elements of a separable, (in general, noncommu-
tative) unital F ∗-algebra A.

The reader should compare Axiom 3.4 with Theorem 2.19. Note how little we
are changing between the classical and the quantum.

Now that we have precisely defined what the observables are in quantum me-
chanics, the definition we would have liked to take for states before as the set of
all positive, multiplicative, unital, restricted linear functionals on the algebra of
observables makes sense. However, this is not quite the definition we want, as,
with the variance defined as above, if our states are taken to be multiplicative,
the variance will always be 0, which is exactly the problem we had in the classi-
cal case. Evidently, in the quantum world, our states are not in general going to
be multiplicative, which yields the following definition, which itself is just a slight
modification of Theorem 2.21):

Axiom 3.5 (Quantum States). The set of states S of a quantum system is exactly
the set of all positive, unital, restricted linear functionals ψ on A.

So what have we accomplished so far? We first took a very natural, intuitive
formulation of classical mechanics, Newtonian mechanics, and defined two impor-
tant entities: the states, which are objects that tell us everything we would ever
want to know about the system, and observables, a very intuitive motivation for
which is given shortly after the definition of a classical state. We really wish to
stress how natural all this was. Look around you: we see that space is essentially
3-dimensional Euclidean space with no preferred origin. Time is a naturally flow-
ing, 1-dimensional entity that also has no preferred moment at which we should
call t = 0. Objects in our universe have a natural notion of something we call mass,
which is intuitively how much “stuff” the object has, and can be defined precisely in
terms of collisions. Furthermore, we have Newton’s Second Law, which if we ignore
for the moment how forces actually arise, essentially says the more you “push” an
object the more its speed will change. All of this gives rise to natural definitions
of states and observables, from which we can prove Theorems 2.19 and 2.21. We
then took this mathematical characterization of states and observables contained
in Theorems 2.19 and 2.21, and tried to figure out why these characterizations are
incompatible with what we know about quantum mechanics. We eventually deter-
mined that to make these characterizations of states and observables compatible
with quantum mechanics (with the benefit of hindsight of course), we should modify
them slightly in the manner presented in Axioms 3.4 and 3.5.

Unfortunately, however, most students of quantum mechanics will not find either
of these definitions familiar at all. But, if we invoke the magic of Theorem 5.20,
we see that the set of observables in quantum mechanics is exactly the set of self-
adjoint elements of a separable, unital F ∗-algebra which is a subset of the set of
all closed, densely-defined linear operators on a separable, complex Hilbert space,
and furthermore that to each quantum state (a positive, unital, restricted linear
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functional on A) corresponds a unique positive operator of trace 1, which is of course
the usual formulation of the definition of observables in quantum mechanics.16

We would like to point out the similarity and difference between this F ∗-algebraic
formulation of quantum mechanics and the C∗-algebraic formulation of quantum
mechanics. The ideas behind both formulations are in fact exactly the same: char-
acterize observables and states in classical mechanics, determine why these formu-
lations don’t hold true in the quantum world, and modify them slightly so that
they do hold true in the quantum world. The difference is that in the C∗-algebraic
formulation one must assume that all the observables are bounded, which is em-
phatically not the case (for example, the kinetic energy E = 1/2mv2 is not going to
be bounded in general). Second of all, when invoking the Gelfand-Naimark Theo-
rem, one obtains that the observables are exactly the self-adjoint operators of B[H]
for some Hilbert space H, which is, once again, emphatically not the case (for ex-
ample, the usual position and momentum operators are not going to be bounded).
In fact, we prove in the next section that there is no C∗-algebra that has elements
x and p that satisfy the canonical commutation relations. This motivates the intro-
duction of F ∗-algebras to account for the unboundedness we would like to include,
and in fact, proceeding the same way as with the usual C∗-algebraic formulation
of quantum mechanics replacing along the way C∗-algebras with F ∗-algebras, one
obtains the formulation of quantum mechanics we have just derived.

In George W. Mackey’s Mathematical Foundations of Quantum Mechanics, im-
mediately after stating what he believes to be an unmotivated axiom that invokes
in some way the usual Hilbert space formulation of quantum mechanics, the author
states the following:

Ideally one would like to have a list of physically plausible assump-
tions from which one could deduce [this axiom]. Short of this one
would like a list from which one could deduce a set of possibilities
for the structure of [the pure states], all but one of which could be
shown to be inconsistent with suitably planned experiments. At
the moment such lists are not available and we are far from being
forced to accept [this axiom] as logically inevitable.

The problem he is referring to is a problem that has bothered me ever since I first
learned quantum mechanics, and while I do not think the argument we have just
given is as strong an argument as Mackey is referring to, in my opinion, it is damn
well close, and indeed, close enough that this author will finally be able to sleep at
night.

4. The Canonical Commutation Relations

Before we conclude this paper, we first want to show that this abstract for-
mulation of quantum mechanics can actually encode the canonical commutation
relations, a crucial feature that was missing from the C∗-algebraic formulation.
You recall that we argued in the previous section that if we are to have (3.3) deriv-
able in our theory, then the canonical commutation relations better be satisfied,

16Perhaps the reader thinks that the states should correspond to normalized vectors in the
Hilbert space. This definition is too narrow and in fact only encompasses the pure states. However,
the projection operator corresponding to the one dimensional subspace spanned by such a vector

is a positive operator of trace 1, and in general, we need to include more than just these projection
operators to take into account more general mixed states.
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that is, we better have that [x, p] = i~. The following theorem shows that this can
be done in our abstract formulation given above.

Theorem 4.1. There exists a separable, unital F ∗-algebra with two self-adjoint
elements X,P that satisfy [X,P ] = i~.

Proof. Step 1: Construct the underlying associative algebra.
Let D ⊆ L2(R) be the collection of functions f such that the function obtained from
f by any finite series of applications of the operations that are either multiplication
by x or taking the derivative is a function in L2(R). This is clearly a subspace of
L2(R), however, we wish to furthermore show that D is dense in L2(R). Let Hn be
the nth Hermite polynomial and define

φn(x) =
1√√
π2nn!

Hn(x)e−x
2/2.

It is well-known17 that this forms an orthonormal basis for L2(R). It is trivial
to check that each of these is an element of D, and hence D is dense in L2(R).
Let A be the associative algebra generated by the operators X and P defined by
[X(f)] (x) = xf(x) and P (f) = −i~∂f both with domains D.

Step 2: Show that [X,P ] = i~.
Let f ∈ D. Then,

[[X,P ](f)] (x) = −i~ [x∂xf(x)− ∂x (xf(x))] = i~ [f(x) + x∂xf(x)− x∂xf(x)]

= i~f(x).

Thus, [X,P ] = i~.
Step 3: Turn A into a ∗-algebra.

Note that, D was defined so that every operator in B may have the same domain
D. Equip this associative algebra with a formal involution defined such that X and
P are both self-adjoint (with respect to this involution, not as operators). Thus,
for example, (3iXP − 5P )∗ = −3iPX − 5P . This turns A into a ∗-algebra.

Step 4: Turn A into a locally convex topological vector space.
Now, let Dn be the subspace18 spanned by the functions φ0, . . . , φn and define
pn(A) = ‖A|Dn

‖. Each pn is clearly a seminorm.
Step 5: Construct the F ∗-algebra.

We show that the collection {pn|n ∈ N} is separating. Suppose that pn(A) =
0 for all n ∈ N. Then, in particular, A(φn) = 0 for all n ∈ N, and hence it
must be the case that A = 0. Thus, by Proposition 5.7, A is metrizable, so let
A be its completion. By density, we can extend addition, scalar multiplication,
multiplication, and involution to turn A into a ∗-algebra. Via the completion
process, the extension of the collection {pn|n ∈ N} to all of A turns A into a Fréchet
space. However, it is easily checked that each seminorm pn satisfies pn(AB) ≤
pn(A)pn(B), pn(A∗A) = pn(A)2. and pn(A) ≤ pn+1(A) for A ∈ A, and hence
the corresponding extension to A must satisfy the same properties. Thus, these
extensions turn A into an F ∗-algebra. Furthermore, the elements X,P ∈ A are
both self-adjoint and satisfy [X,P ] = i~. Finally, it is easy to check that finite
linear combinations of elements of the form |φm〉〈φn|19 with rational coefficients
are dense in A, so that A is separable. �

17See [8], pg. 360.
18Note that each of these will be a subspace of D.
19That is, the unique linear operator on D that sends φn to φm.
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Furthermore, we now show that this emphatically cannot be done with a mere
C∗-algebra.

Theorem 4.2. There exists no C∗-algebra with elements X,P that satisfy [X,P ] =
i~.

Proof. We proceed by contradiction: let A be some C∗-algebra with two elements
X,P that satisfy [X,P ] = i~. Given this, it is easy to prove inductively that
XPn = ni~Pn−1 + PnX. We then see that, for a ∈ R,

XeiaP =
∑
n∈N

XPn
(ia)n

n!
= (i~)(ia)

∑
n∈Z+

(iaP )n−1

(n− 1)!
+
∑
n∈N

(iaP )n

n!
X

= −aeiaP + eiaPX.

Thus,
[
X, eiaP

]
= −aeiaP . It follows that

|a| =
∥∥[X, eiaP ]∥∥ ≤ 2 ‖X‖ .

But this can’t possibly hold for a arbitrary: a contradiction. Thus, there exists no
such C∗-algebra. �

5. Appendix: Locally Convex Spaces, Fréchet Spaces, and
F ∗-algebras

We review a couple of the main facts relevant to the theory of Fréchet spaces, a
type of very nice topological vector space that generalizes the notion of a Banach
space, and from there we proceed to define and classify all F ∗-algebras, a funda-
mental result, that, to the author’s best knowledge, is an original one, that is crucial
to the transition from classical mechanics to quantum mechanics. In general, the
term topological vector space means exactly what you think it would mean, that
is, it is a vector space over a topological field such that the addition and scalar
multiplication maps are continuous. While in general, it makes sense to talk about
such objects, for our purposes, we only care about the case when the field we are
working over is a subfield of the complex numbers.

We first introduce some terminology:

Definition 5.1 (Absorbing Set). Let V be a topological vector space over a subfield
of the complex numbers and let A ⊆ V . Then, we say that A is absorbing if and
only if

⋃
a>0 aA = V .

Definition 5.2 (Balanced Set). Let V be a topological vector space over a subfield
of the complex numbers and let B ⊆ V . Then, we say that B is balanced if and
only if αB ⊆ B for all α ∈ F with |α| ≤ 1.

Definition 5.3 (Bounded Set). Let V be a topological vector space over a subfield
F of the complex numbers and let B ⊆ V . Then, we say that B is bounded iff for
every open neighborhood U of 0, there is some M ≥ 0 such that B ⊆ aU whenever
a ≥M .

Definition 5.4 (Separating). Let V be a topological vector space and let P be
a collection of seminorms on V . Then, we say that P is separating if and only if
whenever p(v) = 0 for all p ∈ P it follows that v = 0.
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Definition 5.5 (Locally Convex Topological Vector Space). Let V be a topological
vector space over a subfield of the complex numbers. Then, we say that V is locally
convex if and only if there exists a base for V ’s topology consisting entirely of
convex sets.

Definition 5.6 (Fréchet Space). Let V be a locally convex topological vector space.
Then, we say that V is a Fréchet space if and only if V is completely metrizable
with a translation invariant metric.

We now present an important theorem that tells us a convenient way to construct
locally convex topological vector spaces.

Proposition 5.7. Let V be a vector space over a subfield of the complex numbers,
let P be a collection of seminorms on V , and for each p ∈ P, ε > 0, and v0 ∈ V de-
fine Up,εv0 = {v ∈ V | p(v − v0) < ε}. Then, V equipped with the topology generated
by the collection

{Up,ε,v0 | p ∈ P, ε > 0, v0 ∈ V }
is a locally convex topological vector space with the following properties:

(1) The collection of all finite intersections of elements of the form Up,ε,v0 for
p ∈ P, ε > 0 rational, and v0 ∈ V forms a base for the topology.

(2) For a fixed v0, the collection of all finite intersections of elements of the
form Up,ε,v0 for p ∈ P and ε > 0 rational forms a local base at v0.

(3) Each p ∈ P is continuous. In fact, this topology is the initial topology of
the collection P.

(4) A set B ⊆ V is bounded iff every p ∈ P is bounded on E.
(5) The topology is Tychonoff if and only if P is separating.
(6) If P = {pn|n ∈ N} is countable and separating, then the topology is metriz-

able with translation invariant metric d satisfying

(a) d(v, w) =
∑∞
n=0 2−n pn(v−w)

1+pn(v−w) .

(b) The open balls centered at 0 are balanced.
(c) d makes V into a Fréchet space if and only if whenever {vn|n ∈ N}

is a sequence that is Cauchy with respect to each pn, it follows that
{vn|n ∈ N} converges to some v ∈ V with respect to each pn.

Proof. Step 1: Introduce notation.
Write S = {Up,ε,v0 | p ∈ P, ε > 0, v0 ∈ V }, let τ be the topology generated by S, let
B be the collection of all finite intersections of elements of S, and for a fixed v0 ∈ V ,
let Bv0 be the collection of all finite intersections of elements of the form Up,ε,v0 for
p ∈ P and ε > 0 rational.

Step 2: Verify property (1).
As the elements in the collection mentioned in property (1) are trivially open, clearly
cover V , and are closed under intersection they form a base for the topology.

Step 3: Prove that Bv0 does indeed form a local base at v0.
Let U be an arbitrary open neighborhood of v0. Then, we can find p1, . . . , pn ∈ P,
ε1, . . . , εn > 0, and v1, . . . , vn ∈ V such that

v0 ∈ Up1,ε1,v1 ∩ · · · ∩ Upn,εn,vn ⊆ U.

Let ε′k be any positive rational less than εk − pk(vk − v0). Note that this is always
possible as each εk−pk(vk−v0) must be positive. Furthermore, it follows from the
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triangle inequality that Upk,ε′k,v0 ⊆ Upk,εk,vk , and hence

v0 ∈ Up1,ε′1,v0 ∩ · · · ∩ Upn,ε′n,v0 ⊆ Up1,ε1,v1 ∩ · · · ∩ Upn,εn,vn ⊆ U,
and hence Bv0 forms a local base at v0.

Step 4: Prove that addition is continuous.
Let v0, w0 ∈ V and let U be an open neighborhood of v0 +w0 in V . Then, because
Bv0+w0 is a local base at v0 + w0, we can find p1, . . . , pn ∈ P and ε1, . . . , εn > 0
such that

Up1,ε1,v0+w0
∩ · · · ∩ Upn,εn,v0+w0

⊆ U.
Define V ′ = Up1,ε1/2,v0 ∩ · · · ∩ Upn,εn/2,v0 and W ′ = Up1,ε1/2,w0

∩ · · · ∩ Upn,εn/2,w0
.

It then follows by the triangle inequality that

V ′ +W ′ ⊆ Up1,ε1,v0 ∩ · · · ∩ Upn,εn,v0 ⊆ U,
and hence the addition map is continuous.

Step 5: Prove that scalar multiplication is continuous.
Let v0 ∈ V , let α0 ∈ F , where V is over the field F , and let α0v0 + U be an open
neighborhood of α0v0 in V . Then, because B0 is a local base at 0, we can find
p1, . . . , pn ∈ P and ε1, . . . , εn > 0 such that

Up1,ε1,0 ∩ · · · ∩ Upn,εn,0 ⊆ U.
Define U ′ = Up1,ε1/2,0 ∩ · · · ∩ Upn,εn/2,0. Then, there is some a > 0 such that
v0 ∈ aU ′. Define b = a

1+|α|a . Then, if v ∈ v0 + bU ′ and |α − α0| < 1/a, it follows

that

αv − α0v0 = α(v − v0) + (α− α0)v0

is an element of

|α|bU ′ + |α− α0|aU ′ ⊆ U ′ + U ′ ⊆ U,
and hence

αv ∈ α0v0 + U.

It follows that scalar multiplication is continuous, and hence that V is a topological
vector space.

Step 6: Show that V is a locally convex topological vector space.
Let p1, . . . , pn ∈ P, let ε1, . . . , εn > 0, and let v1, . . . , vn ∈ V . Then, we wish to
show that

U ≡ Up1,ε1,v1 ∩ · · · ∩ Upn,εn,vn
is convex, so let v ∈ U and let t ∈ (0, 1). Then,

pk (((1− t)v + tv)− vk) = pk ((1− t)(v − vk) + t(v − vk))

≤ (1− t)pk(v − vk) + tpk(v − vk) < (1− t)εk + tεk = εk,

and hence U is convex. Thus, V is a locally convex topological vector space.
Step 7: Verify (3).

Let 0 ≤ a < b and let p ∈ P. Then, p−1 ((a, b)) = {v ∈ V | a < p(v) < b} =
Up,b,0\Up,a,0, which is open, and hence p is continuous.
Conversely, if τ ′ is another topology on V that makes each p ∈ P continuous, then,
by considering the preimage of [0, ε) under the map that sends v to p(v − v0) for a
fixed v0 ∈ V , we see that each Up,ε,v0 must be open, so that this topology is in fact
the initial topology of the collection P.

Step 8: Verify (4).
Let B ⊆ V .
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(⇒) Suppose that B is bounded. Let p ∈ P. Then, Up,1,0 is a neighborhood of 0,
so there is some M ≥ 0 such that B ⊆ aUp,1,0 for all a ≥ M . Thus, for v ∈ B,
p(v) < a for all a ≥M , and hence p(v) ≤M . Thus, p is bounded on B.
(⇐) Suppose that every p ∈ P is bounded on B. Let U be a neighborhood of the
origin. Then, there are p1, . . . , pn ∈ P and ε1, . . . , εn > 0 such that U ′ ≡ Up1,ε1,0 ∩
· · · ∩ Upn,εn,0 ⊆ U . Let M ≥ max{1/ε1, . . . , 1/εn} such that that p1|B , . . . , pn|B ≤
M . Then, whenever a ≥M , it follows that

B ⊆ aU ′ ⊆ aU.
Thus, B is bounded.

Step 9: Verify (5).
(⇒) Suppose that the topology is Tychonoff. Let v ∈ V and suppose that p(v) = 0
for all p ∈ P. Then, this v would be contained in every neighborhood of the origin.
However, as the topology is Tychonoff, then in particular, it is Hausdorff, so that
this implies that v = 0.
(⇐) Suppose that P is separating. Let v, w ∈ V be distinct. Suppose that every
neighborhood of v contains w. Then in particular, p(v − w) < ε for every ε > 0,
and hence p(v − w) = 0, and hence v = w: a contradiction. Thus, the topology
on V is T0. However, (V,+) is a topological group, and hence from the theory of
topological groups, we know that the topology is Tychonoff.

Step 10: Verify (6).
Suppose that P = {pn|n ∈ N} is countable and separating. Define

d(v, w) =

∞∑
n=0

2−n
pn(v − w)

1 + pn(v − w)
.

Clearly, d is nonnegative and d(v, v) = 0. Furthermore, because P is separating,
whenever d(v, w) = 0, it follows that v = w. Thus, d is positive-definite. d is triv-
ially symmetric, translation-invariant, and satisfies the triangle inequality because
each pn does. Thus, d is a translation invariant metric on V .
Since each pn is continuous and the series defining d converges absolutely, it fol-
lows that d is continuous from V × V into R. It follows that the set of all open
balls centered at the origin are open in the original topology, and hence the metric
topology is coarser than the original topology. On the other hand, let U be an open
set in the original topology and let v0 ∈ U . Then, we can find p1, . . . , pn ∈ P and
ε1, . . . , εn > 0 such that U ′ ≡ Up1,ε1,v0 ∩ · · · ∩ Upn,εn,v0 ⊆ U . On the other hand, if

d(v, v0) =

∞∑
n=0

2−n
pn(v − v0)

1 + pn(v − v0)
< ε,

then it must be the case that pk(v−v0) < 2nε
1−2nε for each k ∈ N. Thus, we can choose

ε sufficiently small so that whenever d(v, v0) < ε, it follows that pk(v− v0) < εk for
1 ≤ k ≤ n. For such an ε, v0 ∈ B(ε, v0) ⊆ U ′ ⊆ U , so that U is open in the metric
topology. Thus, the metric topology is the same as the original topology.
It is trivial to check properties (b) and (c). �

This previous result gives us a way of constructing a locally convex topology
given a collection of seminorms on a vector space. Conversely, we may ask whether
the topology on any locally convex topological vector space comes from such a
family of seminorms, and indeed the answer is yes; however, before we begin the
proof, we first need a series of small lemmas:
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Lemma 5.8. Let V be a topological vector space over a subfield of the complex
numbers and let B be a balanced subset of V that contains the origin. Then, Bo is
balanced.

Proof. For 0 < |a| ≤ 1, the map that sends v to av is a homeomorphism, and hence

aBo = (aB)o ⊆ aB ⊆ B
because B is balanced. However, aBo is open, and hence aBo ⊆ Bo. Trivially,
however, this inclusion also holds in the case a = 0 because 0 ∈ B, so that Bo is
balanced. �

Lemma 5.9. Let V be a topological vector space and let U be a convex neighborhood
of 0. Then, there is a convex, balanced neighborhood U ′ of 0 such that U ′ ⊆ U .

Proof. By continuity of scalar multiplication, there is some neighborhood V of 0
and some δ > 0 such that aV ⊆ U whenever |a| < δ. Define W =

⋃
|a|<δ aV . Then,

W is a neighborhood of the origin contained in U which is easily checked to be
balanced.
Now, (forget the original definition of V and ) redefine V =

⋂
|a|=1 aU . For a ∈ C

with |a| = 1, because W is balanced, we have that a−1W = W ⊆ U , so that
W ⊆ aU , so that W ⊆ V . Thus, V o is a neighborhood of 0. In fact, being the
intersection of convex sets, V is convex, and hence so if V o.
Now, let 0 ≤ r ≤ 1 and let |b| = 1. Then,

rbV =
⋂
|a|=1

rbaU =
⋂
|a|=1

raU.

However, aU is a convex set containing the origin, and hence raU ⊆ aU . Thus,
rbV ⊆ V . However, any complex number of norm less than or equal to 1 can be
represented of the form rb, so that V is balanced. But then, by Lemma 5.8, V o is
balanced. Thus, V o is a convex, balanced neighborhood of the origin contained in
U . �

Lemma 5.10. Let V be a topological vector space over a subfield of the complex
numbers and let A ⊆ V be a neighborhood of the origin. Then, A is absorbing.

Proof. Let F be the field that V is over, let v ∈ V , and define fv : (a) = av. f
is continuous, and so f−1(A) is an open neighborhood of 0 (because 0 ∈ A). For
all M ≥ 0 sufficiently large, we have that 1/Mv ∈ A, and hence v ∈ MA for M
sufficiently large. Thus, A is absorbing. �

Lemma 5.11. Let V be a topological vector space over a subfield of the complex
numbers, let A ⊆ V , and define µA : V → [0,∞) by

µA(v) = inf
{
a > 0| a−1v ∈ A

}
.

Then, if A is convex, balanced, and absorbing, µA is a seminorm.

Proof. Note that, because A is absorbing, it must be the case that 0 ∈ A. Trivially,
µA is nonnegative. Furthermore, because 0 ∈ A, it follows that µA(0) = 0.
For each v ∈ V , define

MA(v) =
{
a > 0| a−1v ∈ A

}
.

Because A is convex and contains 0, it follows that a ∈ MA(v) and b > a, then
b ∈MA(v). That is, MA(v) is either of the form (µA(v),∞) or [µA(v),∞).
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Let b > 0 nonzero and let a ∈MA(bv). Then, b
av = 1

a/bv ∈ A. Thus, a/b ∈MA(v),

so that a ∈ bMA(v). Thus, MA(bv) ⊆ bMA(v). The other inclusion is similar, so
that we have MA(bv) = bMA(v). For b < 0, write b = −c for c > 0 and use the
fact that −A ⊆ A because A is balanced. Thus, MA(bv) = |b|MA(v) for all b ∈ R.
Thus, µA(bv) = |b|µA(v).
Now, let a and b be arbitrary positive real numbers such that µA(v) < a and
µA(w) < b, and define c = a + b. Then, a−1v ∈ A and b−1w ∈ A. Because A is
convex, we have that

c−1(v + w) =
a

c
a−1v +

b

c
b−1w ∈ A.

Thus, µA(v+w) ≤ c = a+ b. As a and b were arbitrary, we have that µA(v+w) ≤
µA(v) + µA(w). It follows that µA is a seminorm. �

Proposition 5.12. Let V be a locally convex topological vector space over a subfield
of the complex numbers. Then, there exists a collection P of seminorms on V that
induce the original topology on V .

Proof. Because V is locally convex, we can find a local base at 0 consisting of
convex sets. By Lemma 5.9, we can furthermore find a local base at 0 consisting
of balanced, convex sets. Write this collection as A. By Lemma 5.10, each element
of A is also absorbing, and hence by Lemma 5.11, µA is a seminorm on V for each
A ∈ A, and so P ≡ {µA|A ∈ A} induces a locally convex topology on V , as given
by Proposition 5.7. We wish to show that this topology is the original topology on
V .
We first show that each µA is continuous, so let ε > 0. Then, whenever v−w ∈ εA,
it follows that

|µA(v)− µA(w)| ≤ µA(v − w) < ε,

so that µA is continuous. Thus, the original topology is finer than the seminorm
topology (because the seminorm topology is the coarsest topology which makes each
µA continuous, via Proposition 5.7.(3). Conversely, it suffices to show that each
A ∈ A is open in the seminorm topology, however, this is trivial as µ−1A ([0, 1)) = A
because A is open and balanced. Thus, the seminorm topology is the same as the
original topology. �

In conclusion, a collection of seminorms defines a locally convex topology on a
topological vector space, and conversely, the topology on a locally convex topolog-
ical vector space arises from the topology induced by a collection of seminorms.
Furthermore, this topology is T0, which in the context of topological groups, is
equivalent to being Tychonoff, if and only if the collection of seminorms is sep-
arating. Furthermore, this topology is metrizable if and only if the collection of
seminorms is separating and countable, and is complete with respect to any metric
inducing this topology if and only if either hypothesis of Proposition 5.7.(6).(c) is
satisfied.

We are now in a position to define a Fréchet algebra:

Definition 5.13 (Fréchet Algebra). Let A be a Fréchet space with topology in-
duced by the seminorms {pn|n ∈ N}20 that is also an associative algebra. Then, we

20Note here that we are using both the results of Proposition 5.12 and Proposition 5.7. We

need Proposition 5.12 to deduce that the topology on A arises from a collection of seminorms and
we need Proposition 5.7 to deduce that this collection is countable.
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say that A is a Fréchet algebra if and only if pn(AB) ≤ pn(A)pn(B) for all n ∈ N
and A,B ∈ A and pm ≤ pn for m ≤ n.

Definition 5.14 (Fréchet ∗-algebra). Let A be a Fréchet algebra with a map
∗ : V → V . Then, we say that A is a Fréchet ∗-algebra if and only if A is over C
and for all A,B ∈ A and a ∈ C

(1) (A+B)∗ = A∗ +B∗.
(2) (aA)∗ = a∗A∗.
(3) (AB)∗ = B∗A∗.
(4) (A∗)∗ = A.

Definition 5.15 (F ∗-algebra). Let A be a Fréchet ∗-algebra with topology induced
by the seminorms {pn|n ∈ N}. Then, we say that A is an F ∗-algebra if and only if
pn(A∗A) = pn(A)2 for all A ∈ A.

The reader should take note that, in the same way that a Fréchet space is a
generalization of a Banach space, an F−∗-algebra is a generalization of a C−∗-
algebra.

Before we proceed, we prove a small lemma that will be useful to us later.

Lemma 5.16. Let A be an F ∗-algebra with collection of seminorms {pn|n ∈ N}.
Then, pn(A∗) = pn(A) for all A ∈ A and n ∈ N.

Proof. We have that

pn(A)2 = pn(A∗A) ≤ pn(A∗)pn(A),

and hence pn(A) ≤ pn(A)∗. Replacing A with A∗ yields the reverse inequality, and
hence pn(A) = pn(A∗). �

There is a deep theorem21 essentially classifying all C∗-algebras:

Theorem 5.17 (Gelfand-Naimark Theorem). Let A be a separable, unital C∗-
algebra. Then, there exists a separable complex Hilbert space H such that:

(1) There exists an isometric ∗-isomorphism π from A into a closed subalgebra
of B[H].

(2) ψ is a positive, unital linear functional on A if and only if there exists a
positive trace-class operator of trace 1 Ψ such that ψ(A) = tr [Ψπ(A)].

For a complete proof of this result, see [6, Theorem 6.4]. However, in quantum
mechanics, bounded operators are not enough, and we would like to extend such a
result to all operators on a Hilbert space.

There is a little subtlety, here, however. First of all, a general unbounded oper-
ator on a Hilbert space need not even have an adjoint. To remedy this problem,
however, we only consider densely-defined operators. Every densely-defiend opera-
tor has an adjoint; however, the adjoint need not be densely defined. Furthermore,
iven the usual definition of the adjoint for unbounded operators, D (A∗∗) will not
in general be equal to D(A). To remedy this problem, we only consider closed
operators, as, for densely-defined operators, being closed is equivalent to A = A∗∗.
Thus, L[H] will refer to the set of closed, densely-defined linear operators.

21This is actually a slight modification of said theorem that gives a one-to-one correspondence
between positive, unital linear functionals and positive trace-class operators of trace 1.
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There is a problem with this however. For A,B ∈ L[H] closed, A + B (defined
on D(A) ∩ D(B)) need not even be closable.22 Evidently, there is no nice way of
turning L[H] into a vector space, much less an F ∗-algebra. Nevertheless, certain
nice subsets of L[H] evidently do form an F ∗-algebra, and furthermore, we show
(see Theorem 5.20) that essentially every F ∗-algebra is of this form. In these cases,
the algebraic structure is what you would expect and the Fréchet space structure is
given by choosing a countable orthonormal basis {en|n ∈ N} for the Hilbert space,
defining Hn = span{e0, . . . , en}, and defining pn(A) =

∥∥A|D(A)∩Hn

}
.

Returning our thought back to classical mechanics for the moment, we remember
that the observables in Newtonian mechanics were exactly the self-adjoint elements
of a separable, unital F ∗-algebra that was a inverse limit of a sequence of separable,
unital C∗-algebras,23 and indeed, we wish to show that, in a sense that can be made
precise, every F ∗-algebra that is the inverse limit of a sequence of C∗-algebras is a
closed subalgebra of some L[H]. But first, however, we must prove that the inverse
limit of a sequence of C∗-algebras is in fact an F ∗-algebra:

Theorem 5.18. Let {Am|m ∈ N} be a sequence of separable, unital C∗-algebras
with morphisms24 that have dense image fm,n : An → Am for m ≤ n such that

(1) fm,m is the identity on Am.
(2) fi,j ◦ fj,k = fi,k for all i ≤ j ≤ k.

Then, there exists a separable, unital F ∗-algebra A, that is unique up to isomor-
phism, with morphisms that have dense image πm : A → Am such that πm =
fm,n ◦ πn for m ≤ n. Furthermore, A is universal in the sense that, for any other
separable, unital F ∗-algebra B with morphisms that have dense image ρm : B → Am
such that ρm = fm,n ◦ ρn for m ≤ n, there exists a unique morphism f : B → A
such that the following diagram commutes

B

ρm

��

f

���
�
�

ρn

��

A

πm}}||||||||

πn   AAAAAAAA

Am
fm,n // An

for m ≤ n.

Proof. Step 1: Define A.
Define

A =

{
A ∈

∏
n∈N
An| fm,n(An) = Am

}
.

22The following counterexample is due to Robert Israel given to me on
math.stackexchange.com. On `2, define A and B such that [A(x)]n = − [B(x)]n = n2

for n > 1 and [A(x)]1 =
∑

n∈Z+ nxn and [B(x)]1 = 0 with D(A) = D(B) ={
x ∈ `2|

∑
n∈Z+ n4|xn|2 <∞

}
.

23The C∗-algebras we are referring to are C(Kn), where {Kn|n ∈ N} was the sequence of

increasing compact subsets whose union was all of M , the space of states.
24Morphisms in the category of F ∗-algebras are continuous ∗-homomorphisms, that is, contin-

uous linear maps that preserve multiplication and involution, and send the identity to the identity
(for unital algebras).
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Addition, multiplication, and involution are performed on A component-wise and
define seminorms on A by pn(v) = ‖An‖25.

Step 2: Show that A is a locally convex topological vector space.
By virtue of Proposition 5.7, we just need to verify that each pn is a seminorm,
which follows trivially from the fact that ‖·‖n is a norm on An.

Step 3: Show that A is a Fréchet space.
Suppose that pn(A) = 0 for all n ∈ N. Then, each An = 0, and hence A = 0. Thus,
the collection {pn|n ∈ N} is separating on A. Now, suppose that {An|n ∈ N}
is a sequence in A that is Cauchy with respect to each pm. It follows that the
sequence {Anm|n ∈ N} is a Cauchy sequence in Am, and hence we can define
Am = limn→∞Anm. By continuity of fi,j , we have that

fi,j(Aj) = lim
n→∞

fi,j(A
n
j ) = lim

n→∞
Ani = Ai.

Thus, the element defined by A = (A0, A1, . . . , An, . . .) ∈ A, and furthermore, the
sequence {An|n ∈ N} converges to A with respect to each pm, and hence A is a
Fréchet space, once again, by virtue of Proposition 5.7.

Step 4: Show that A is a separable, unital F ∗-algebra.
It is easy to verify that A is a ∗-algebra. Furthermore, pn(AB) ≤ pn(A)pn(B) and
pn(A∗A) = pn(A)2 because the respective properties hold for each ‖·‖n. Further-
more, it is clear that the element (1, 1, . . .) is a multiplicative identity, and hence A
is a unital F ∗-algebra.

∏
n∈NAn is a product of separable spaces, and hence is sep-

arable. Countable products of metrizable spaces are metrizable, so this product is
metrizable. Countable products of separable spaces are separable, so this product is
also separable, and hence second-countable, as separability is equivalent to second-
countability for metrizable spaces. Thus, the subspace A is second-countable, and
hence separable.

Step 5: Define πm and prove they satisfy the desired property.
Define πm : A → Am such that πm(A) = Am. Then, for m ≤ n,

fm,n (πn(A)) = fm,n(An) = Am,

where we have applied the defining property of A in the last equality. Furthermore,
it is easy to see that each πm has dense image because each fn+1,n does.

Step 6: Show that A is universal with respect to these properties.
Let B be another F ∗-algebra with maps ρm : B → Am satisfying ρm = fm,n ◦ ρn
for m ≤ n. Define f : B → A by f(B) = (ρ0(B), ρ1(B), . . . , ρn(B), . . .). This is
clearly a morphism in the category of F ∗-algebras that, by construction, makes the
desired diagram commute. Furthermore, by composing πm with f , we see that any
such map f must satisfy πm (f(B)) = ρm(B), so that the morphism f is unique.

Step 7: Show that A is unique up to isomorphism.
Let A′ be any other such F ∗-algebra. Then, by taking B = A′, there is a unique
morphism f : A′ → A that makes a certain diagram commute. Then, switching
the roles of A and A′, we see that there must be a unique morphism f ′ : A → A′
that makes another certain diagram commute. It follows that the map f ◦ f ′ is
the unique map from A to itself that, if drawn into the diagram as a loop from A
to itself, would yield a commuting diagram. But the identity is such a map, and

25When there is no ambiguity, we shall not distinguish between the norms on eachAn, however,
when there is ambiguity, we shall write ‖·‖n for the norm on An.
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hence f ◦ f ′ is the identity. Similarly, f ′ ◦ f is the identity, and so A is isomorphic
to A′. �

We have just proved that the inverse limit of a sequence26 of separable, unital C∗-
algebras is an F ∗-algebra. Conversely, we may ask the question “Is every separable,
unital F ∗-algebra the inverse limit of a sequence of separable, unital C∗-algebras?”,
and indeed, the answer is affirmative:

Theorem 5.19. Let A be a separable, unital F ∗-algebra. Then, there exists a
sequence {Am|m ∈ N} of separable, unital C∗-algebras such that A is the inverse
limit of this sequence.

Proof. Step 1: Construct the spaces by which we wish to quotient.
Let {pn|n ∈ N} be the collection of seminorms on A that make it into an F ∗-algebra
and define Vn = p−1n (0). We wish to show that each Vn is a two-sided ideal that is
closed under involution.

Step 2: Show that these spaces do indeed form two-sided ideals that
are closed under involution.
It is trivial to check using the fact that pn is a seminorm that Vn is a vector space
over the field F , where F is the field that A is over. Furthermore, if A ∈ Vn and
B ∈ A, then

0 ≤ pn(AB) ≤ pn(A)pn(B) = 0pn(B) = 0,

so that AB ∈ Vn. Similarly, BA ∈ Vn, so that Vn is a two-sided ideal. Furthermore,
if A ∈ Vn, we have that

pn(A∗) = pn(A) = 0,

so that A∗ ∈ Vn, where we have applied Lemma 5.16. Thus, each Vn is a two-
sided ideal closed under involution. Thus, we may define the associative ∗-algebra

Ãn ≡ A/Vn.

Step 3: Turn each Ãn into normed unital ∗-algebra.

First of all, note that we do not equip Ãn with the quotient topology. Instead, we
give it the norm topology of the norm we are about to define. For A ∈ A, define

‖A+ Vn‖ = pn(A).

To show that this is well-defined, let B ∈ A be such that A−B ∈ Vn. Then,

|pn(A)− pn(B)| ≤ pn(A−B) = 0,

so that pn(A) = pn(B). This clearly defines a seminorm on Ãn as pn itself is a
seminorm. To show that it is in fact a norm, suppose that ‖A+ Vn‖ = 0. Then,

pn(A) = 0, and hence A ∈ Vn. This norm thus turns Ãn into a normed unital
∗-algebra. We furthermore note that

‖(A+ Vn) (B + Vn)‖ ≤ ‖A+ Vn‖ ‖B + Vn‖
and

‖(A∗ + Vn) (A+ Vn)‖ = ‖A+ Vn‖2

because pn satisfies these properties. Unfortunately, however, Ãn is not necessarily
going to be complete, so let An be its completion.

26For our purposes, the inverse limit of a sequence of C∗-algebras is the unique F ∗-algebra that

satisfies the universal property of the previous theorem. In particular, we are assuming that these
morphisms have dense image, which to the best of my knowledge, is not a universal assumption.
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Step 4: Turn each An into a separable, unital C∗-algebra.

By density of Ãn in An, it is easy to extend definitions of addition, scalar multi-
plication, multiplication, and involution to An that turn it into a complete unital
∗-algebra. Furthermore, because the norm on Ãn satisfies these properties, the
norm on An must satisfies ‖AB‖ ≤ ‖A‖ ‖B‖ and ‖A∗A‖ = ‖A‖2. Thus, An is a

C∗-algebra. Furthermore, each Ãn is separable because A is, and in turn each An
is separable because each Ãn is.

Step 5: Show that A is the inverse limit of this sequence.
Let πm : A → Am be the composite of the injection from Ãm into its completion

Am with the projection map πm from A into Ãm. This map is certainly a ∗-
homomorphism and it is easy to check that it is also continuous. Furthermore,
because pm ≤ pn for m ≤ n, we have that Vn ⊆ Vm, and hence the map πm,n
defined by

πm,n (A+ Vn) = πm(A)

is well-defined. Once again, it is easy to check that πm,n is a continuous ∗-

homomorphism from Ãn into Ãm, and hence we obtain a continuous ∗-homomorphism
from An into Am: call it fm,n. It is then easy to check that these maps make A
satisfy the necessary universal stated in Theorem 5.18, and hence A is the inverse
limit of the sequence of separable, unital C∗-algebras {Am|m ∈ N}. �

The following theorem allows us to classify all F ∗-algebras in the same vein that
the Gelfand-Naimark Theorem allows us to classify all C∗-algebras:

Theorem 5.20 (Gelfand-Naimark Theorem for F ∗-Algebras). Let A be a separa-
ble, unital F ∗-algebra. Then, there exists a separable complex Hilbert space H such
that:

(1) There is an isomorphism π from A to a separable, unital F ∗-algebra which
is a subset of L[H].

(2) For every positive, unital, restricted linear functional ψ on A, there ex-
ists a unique positive trace-class operator of trace 1 Ψ such that ψ(A) =
tr [Ψπ(A)].

Proof. Step 1: Define the F ∗-algebra that is a subset of L[H].
By the previous theorem, there exists a sequence of separable, unital C∗ algebras
{Am|m ∈ N} such that A is the inverse limit of this sequence. By the Gelfand-
Naimark Theorem, there exist separable complex Hilbert spaces Hm such that Am
is isomorphic to a closed subalgebra of B[Hm]. Let φm be the isomorphism from
Am into B[Hm]. Write Bm = φm (Am). Let fm,n be the morphism from An to Am
whose existence is guaranteed by the previous theorem and define gm,n : Bn → Bm
such that gm,n = φm ◦ fm,n ◦ φ−1n . Define the Hilbert space H =

⊕
n∈NHn and

define

B =

{
A ∈ L[H]|A =

⊕
n∈N

An, An ∈ Bn, gm,n(An) = Am

}
,

where the domain of each A ∈ B is defined to be the set of all v =
⊕

n∈N vn ∈
H such that A(v) =

⊕
n∈NAn(vn) ∈ H where A =

⊕
n∈NAn, i.e., such that∑

n∈N ‖An(vn)‖2 <∞.
Step 2: Prove that B satisfies the desired properties.

If {emn |n ∈ N} is an orthonormal basis for Hm, then
⋃
m,n∈N e

m
n is an orthonormal
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basis for H, and hence H is separable. Moreover, as the domain of A ∈ B contains
each element in this basis, the domain of each A ∈ B is dense in B. We now show
that each A ∈ B is closed. Let {vm|m ∈ N} be a sequence in D(A) that converges to
v ∈ H and such that A(vm) converges to w ∈ H. We may write vm =

⊕
n∈N v

m
n and

A =
⊕

n∈NAn so that A(vm) =
⊕

n∈NAn(vmn ). Becuase {vm|m ∈ N} converges,
it follows that for each n ∈ N, the sequence {vmn |m ∈ N} converges, say to vn, so
that v =

⊕
n∈N vn. Furthermore, because the sequence {A(vm)|m ∈ N} converges,

it follows that for each n ∈ N, the sequence {An(vmn )|m ∈ N} converges uniformly
in m, say to wn. Thus, because each An is closed, it follows that vn ∈ D(An) and
wn = An(vn), so that A(v) = w. Now, let ε > 0 and choose M sufficiently large

so that ‖wn‖2 ≤ ε
2n +

∥∥An(vMn )
∥∥2, where we can pick an M that works for all n

because the convergence is uniform in m. Then,∑
n∈N
‖An(vn)‖2 =

∑
n∈N
‖wn‖2 ≤ 2ε+

∑
n∈N

∥∥An(vMn )
∥∥2 = 2ε+

∥∥A(vM )
∥∥2 <∞.

Thus, v ∈ D(A) and A(v) = w, and hence A is closed. Furthermore, define ρn :
B → Bn by ρn(A) = An if A =

⊕
n∈NAn. It is then easy to see that B is the inverse

limit of the sequence {Bm|m ∈ N}. But via the isomorphisms from Am into Bm,
this means that B is also the inverse limit of the sequence {Am|m ∈ N}, and hence,
by uniqueness, A is isomorphic to B, that is, A is isomorphic to a separable, unital
F ∗-algebra which is a subset of L[H].

Step 3: Prove (2).
Let π be the isomorphism from A onto B. Let ψ be a positive, unital, restricited

linear functional on A. Then, ψ = f̂n(ψn) for some positive, unital linear functional
ψn on An, where fn : A → An is the given morphism that makes A the inverse
limit of {An|n ∈ N}. Then, by the Gelfand-Naimark Theorem for C∗-algebras,
there exists a positive trace-class operator of trace 1 Ψn on Hn such that ψn(A) =
tr [Ψnφn(A)]. Define Ψ on H to be the unique operator that sends v to Ψn(v) for
v ∈ Hn and sends v to 0 otherwise. It follows that Ψ defines an operator on H that
is positive and of trace-class with trace 1 that furthermore satisfies the property
that ψ(A) = tr [Ψπ(A)]. Ψ is uniquely determined on Hn because Ψn is unique
(by Theorem 5.17) and must be uniquely 0 on Hm for m 6= n because it must be
positive and of trace 1. Thus, Ψ is unique. �

We end this appendix with a miscellaneous result that is required in the proof
of Theorem 2.21.

Lemma 5.21. Let X be a compact Hausdorff space such that C(X) is separable.
Then, the map that sends x ∈ X to x̂ ∈ C(X)∗ is a homeomorphism onto the set
of all positive, multiplicative, unital linear functionals.27

Proof. Step 1: Note that each linear functional of this form is posi-
tive, multiplicative, and unital.
First of all, we note that it is easy to check that each x̂ is a positive, multiplicative,
unital linear functional.

Step 2: Show that each positive, multiplicative, unital linear func-
tional is of this form.
To show that each such linear functional is of this form, let ψ ∈ C(X)∗ be posi-
tive, multiplicative, and unital. For each x ∈ X, let {Kx,n|n ∈ N} be a decreasing

27We always equip the dual space with the weak-∗ topology.
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sequence of compact sets such that
⋂
n∈NKx,n = {x}. We may construct such a

sequence because X is compact and normal. By Urysohn’s Lemma, there exists a
function fx,n ∈ C(X) of norm 1 such that fx,n|Kn

= 1 and fx,n|KC
n−1

= 0. For each

x ∈ X, consider the sequence defined by ax,n = ψ (fx,n). Because ψ is bounded, it
follows that the sequence {ax,n|n ∈ N} is bounded. We proceed by contradiction:
suppose that every such sequence converged to 0. Then, as finite linear combina-
tions of functions of the form {fx,n|x ∈ X,n ∈ N} are dense in C(X), then it would
follows that ψ(1) = 0: a contradiction. Thus, there must be some x0 ∈ X such
that the sequence {ax0,n|n ∈ N} does not converge to 0. Furthermore, for x 6= x0
and large enough n, fx,nfy,n = 0, so that

0 = ψ(0) = ψ (fx,nfx0,n) = ax,nax0,n.

As {ax0,n|n ∈ N} does not converge to 0, it follows that {ax,n|n ∈ N} must. As
every subsequence {ax0,n|n ∈ N} is bounded, every subsequence has in turn some
convergent subsequence {ax0,mn

|n ∈ N}. However, we also know that fx0,mn+1
≤

f2x0,mn
, and hence, taking limits, ax0 ≤ a2x0

, where ax0 ≡ limψ (fx0,n). As we
already know that ax0

6= 0, it follows that ax0
≥ 1. Then, by Proposition 4.12

of [6]28, we have that ax0
≤ 1, and hence ax0

= 1. Thus, every subsequence
of {ax0,n|n ∈ N} has in turn a subsequence that converges to 1, and hence this
sequence converges to 1. In conclusion,

limψ (fx,n) =

{
1 if x = x0

0 otherwise
.

Now, let f ∈ C(X) be arbitrary. Then, as X has a natural uniform structure29, f is
uniformly continuous, and hence {(f − f(x0)) fx0,n|n ∈ N} must converge to 0, and
hence {ψ ((f − f(x0)) fx0,n) |n ∈ N} must converge to 0, and hence ψ(f) = f(x0).
Hence, ψ = x̂0.

Step 3: Note that this map is injective.
As X is normal, we can separate any two distinct points by a function, and hence
the map that sends x to x̂ must be injective.

Step 4: Show that this map is continuous.
Let I be a directed set and let {xi| i ∈ I} be a net in X converging to x ∈ X and
let f ∈ C(X). Then, because f is continuous, {f(xi)| i ∈ I} converges to f(x), and
hence, by definition of the weak-∗ topology, {x̂i| i ∈ I} converges to x̂. Thus, the
map x 7→ x̂ is continuous.

Step 5: Show that the set of all positive, multiplicative, unital
linear functionals is Hausdorff.
By Proposition 4.12 of [6] again, the set of all positive, multiplicative linear, unital
linear functionals on C(X) is contained in the unit ball of C(X)∗, which itself is
metrizable, and hence the set of all positive, multiplicative, unital linear functionaos
is Hausdorff.

Step 6: Deduce that this map is a homeomorphism.
This means that we have that the map that sends x to x̂ is an injective, continuous
map from a compact space into a Hausdorff space, and hence is a homeomorphism
onto its image. Thus, the map that sends x ∈ X to x̂ ∈ C(X)∗ is a homeomorphism
onto the set of all positive, multiplicative, unital linear functionals. �

28All this tells us is that ‖ψ‖ = 1.
29See [7], pg. 106.
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