nLab
ω-meson

Contents

Context

Fields and quanta

fields and particles in particle physics

and in the standard model of particle physics:

force field gauge bosons

scalar bosons

matter field fermions (spinors, Dirac fields)

flavors of fundamental fermions in the
standard model of particle physics:
generation of fermions1st generation2nd generation3d generation
quarks (qq)
up-typeup quark (uu)charm quark (cc)top quark (tt)
down-typedown quark (dd)strange quark (ss)bottom quark (bb)
leptons
chargedelectronmuontauon
neutralelectron neutrinomuon neutrinotau neutrino
bound states:
mesonslight mesons:
pion (udu d)
ρ-meson (udu d)
ω-meson (udu d)
f1-meson
a1-meson
strange-mesons:
ϕ-meson (ss¯s \bar s),
kaon, K*-meson (usu s, dsd s)
eta-meson (uu+dd+ssu u + d d + s s)

charmed heavy mesons:
D-meson (uc u c, dcd c, scs c)
J/ψ-meson (cc¯c \bar c)
bottom heavy mesons:
B-meson (qbq b)
ϒ-meson (bb¯b \bar b)
baryonsnucleons:
proton (uud)(u u d)
neutron (udd)(u d d)

(also: antiparticles)

effective particles

hadrons (bound states of the above quarks)

solitons

in grand unified theory

minimally extended supersymmetric standard model

superpartners

bosinos:

sfermions:

dark matter candidates

Exotica

auxiliary fields

Contents

Idea

In nuclear physics, specifically in the chiral perturbation theory of quantum chromodynamics, the omega-meson is the isospin-singlet vector meson field in the first-generation of fermions, i.e. a bound state of an up quark and a down quark (a light meson), the chiral partner of the f1-meson:


flavors of fundamental fermions in the
standard model of particle physics:
generation of fermions1st generation2nd generation3d generation
quarks (qq)
up-typeup quark (uu)charm quark (cc)top quark (tt)
down-typedown quark (dd)strange quark (ss)bottom quark (bb)
leptons
chargedelectronmuontauon
neutralelectron neutrinomuon neutrinotau neutrino
bound states:
mesonslight mesons:
pion (udu d)
ρ-meson (udu d)
ω-meson (udu d)
f1-meson
a1-meson
strange-mesons:
ϕ-meson (ss¯s \bar s),
kaon, K*-meson (usu s, dsd s)
eta-meson (uu+dd+ssu u + d d + s s)

charmed heavy mesons:
D-meson (uc u c, dcd c, scs c)
J/ψ-meson (cc¯c \bar c)
bottom heavy mesons:
B-meson (qbq b)
ϒ-meson (bb¯b \bar b)
baryonsnucleons:
proton (uud)(u u d)
neutron (udd)(u d d)

Properties

Nuclear binding

Together with the sigma-meson the omega is responsible for most of the long-range interaction between baryons, exhibiting the residual strong nuclear force between them (as modeled by Walecka model and quantum hadrodynamics).

Couplings

The ω\omega-3π3 \pi-coupling

The interaction term of the omega-meson three pions is, in the Lagrangian density, given by contraction

ω μB μ \omega_\mu B^\mu

with the chirally anomalous baryon current Btr((U 1dU)(U 1dU)(U 1dU))B \coloneqq \star tr( (U^{-1} d U) \wedge (U^{-1} d U) \wedge (U^{-1} d U) ), with UU is the exponential of the pion-field (Adkins-Nappi 84, (1) and (2), Park-Vento 09, (5.5.43) and above (5.5.50)).

This gives a decay mode

ωπ ++π +π 0 \omega \to \pi^+ + \pi^- + \pi^0

(the “charged decay”, e.g. Rudaz 84, (2)).

Or rather, this is the direct (contact term) decay. The net process ω3π\omega \to 3 \pi is dominated by the successive decay

ωρ+π(2π)+π \omega \to \rho + \pi \to (2 \pi) + \pi

The ω\omega-ρ\rho-π\pi-coupling

Then there is an ω-ρ-π-coupling given by the anomalous part of the chiral WZW-term:

g ωρπϵ μνκλ μω ν κρ λπ g_{\omega \rho \pi} \epsilon^{\mu \nu \kappa \lambda} \partial_\mu \omega_\nu \partial_\kappa \rho_\lambda \cdot \pi

(e.g. Renard 69, Meissner-Kaiser-Weise 87, (2.18) Volkov-Ebert-Nagy 97, p. 12, Guetta-Singer 00, (1), Kaiser 00, (12), GKSY 03, (1) Gudino-Sanchez 12, (1))

The radiative decays

Then there is the “neutral decay”

ωπ 0+γ \omega \to \pi^0 + \gamma

seen in experiment as

ω π 0+γ γ+γ+γ \begin{aligned} \omega & \to \pi^0 + \gamma \\ & \to \gamma + \gamma + \gamma \end{aligned}

(Nambu 57, (a), FFHNR 67, Dolinsky et al. 89, (5))

References

General

The ω\omega-meson was first postulated by

as reviewed in

See also:

See also

Phenomenology:

  • Cheng-Qun Pang, Ya-Rong Wang, Jing-Fu Hu, Tian-Jie Zhang, Xiang Liu, Study of the ω\omega meson family and newly observed ω\omega-like state X(2240)X(2240) (arXiv:1910.12408)

  • M. K. Volkov, A. A. Pivovarov, K. Nurlan, On the mixing angle of the vector mesons ω(782)\omega(782) and ϕ(1020)\phi(1020) (arXiv:2005.00763)

Decays

The direct decay ωπ 0+π ++π \omega \to \pi^0 + \pi^+ + \pi^-:

  • S. Rudaz, Anomalies, vector mesons and the ω3π\omega \to 3 \pi contact term, Phys. Lett. B 145 (1984) 281-284 (spire:208193, doi:10.1016/0370-2693(84)90355-1)

  • E. A. Kuraev, Z. K. Silagadze, Once more about the ω3π\omega \to 3 \pi contact term, Phys. Atom. Nucl. 58:1589-1596, 1995 (arXiv:hep-ph/9502406)

  • M. Albaladejo, I. Danilkin, S. Gonzalez-Solis, D. Winney, C. Fernandez-Ramirez, A. N. Hiller Blin, V. Mathieu, M. Mikhasenko, A. Pilloni, A. Szczepaniak, ω3π\omega \to 3\pi and ωπ 0\omega \pi^0 transition form factor revisited (arXiv:2006.01058)

The ωπρ\omega \pi \rho-coupling

  • D. Garcia Gudino, G. Toledo Sanchez, The ωρπ\omega \rho \pi coupling in the VMD model revisited, Int. J. Mod. Phys. A 27, 1250101 (2012) (arXiv:1106.1467)

On Dalitz decays of omega-mesons:

  • Mirko Wachs, Die Selbstenergie des Omega-Mesons, 2000 (epda:000050)

  • Henning Berghäuser, Investigation of the Dalitz decays and the electromagnetic form factors of the η\eta and π 0\pi^0-meson, 2010 (spire:1358057)

Skyrme hadrodynamics with vector mesons (π\pi-ω\omega-ρ\rho-model)

Inclusion of vector mesons (omega-meson and rho-meson/A1-meson) into the Skyrmion model of quantum hadrodynamics, in addition to the pion:

First, on the equivalence between hidden local symmetry- and massive Yang-Mills theory-description of Skyrmion quantum hadrodynamics:

  • Atsushi Hosaka, H. Toki, Wolfram Weise, Skyrme Solitons With Vector Mesons: Equivalence of the Massive Yang-Mills and Hidden Local Symmetry Scheme, 1988, Z. Phys. A332 (1989) 97-102 (spire:24079)

See also

  • Marcelo Ipinza, Patricio Salgado-Rebolledo, Meron-like topological solitons in massive Yang-Mills theory and the Skyrme model (arXiv:2005.04920)

Inclusion of the ω\omega-meson

Original proposal for inclusion of the ω-meson in the Skyrme model:

Relating to nucleon-scattering:

  • J. M. Eisenberg, A. Erell, R. R. Silbar, Nucleon-nucleon force in a skyrmion model stabilized by omega exchange, Phys. Rev. C 33, 1531 (1986) (doi:10.1103/PhysRevC.33.1531)

Combination of the omega-meson-stabilized Skyrme model with the bag model for nucleons:

Discussion of nucleon phenomenology for the ω\omega-stabilized Skyrme model:

Inclusion of the ρ\rho-meson

Original proposal for inclusion of the ρ-meson:

Discussion for phenomenology of light atomic nuclei:

Inclusion of the ω\omega- and ρ\rho-meson

The resulting π\pi-ρ\rho-ω\omega model:

See also

  • Ki-Hoon Hong, Ulugbek Yakhshiev, Hyun-Chul Kim, Modification of hyperon masses in nuclear matter, Phys. Rev. C 99, 035212 (2019) (arXiv:1806.06504)

Review:

Combination of the omega-rho-Skyrme model with the bag model of quark confinement:

  • H. Takashita, S. Yoro, H. Toki, Chiral bag plus skyrmion hybrid model with vector mesons for nucleon, Nuclear Physics A Volume 485, Issues 3–4, August 1988, Pages 589-605 (doi:10.1016/0375-9474(88)90555-6)

Inclusion of the σ\sigma-meson

Inclusion of the sigma-meson:

  • Thomas D. Cohen, Explicit σ\sigma meson, topology, and the large-NN limit of the Skyrmion, Phys. Rev. D 37 (1988) (doi:10.1103/PhysRevD.37.3344)

For analysis of neutron star equation of state:

  • David Alvarez-Castillo, Alexander Ayriyan, Gergely Gábor Barnaföldi, Hovik Grigorian, Péter Pósfay, Studying the parameters of the extended σ\sigma-ω\omega model for neutron star matter (arXiv:2006.03676)

Couplings

On omega-meson interactions and decay modes:

  • Stanley M. Flatté, Darrell O. Huwe, Joseph J. Murray, Janice Button-Shafer, Frank T. Solmitz, M. Lynn Stevenson, and Charles Wohl, Decay Properties of the ω\omega Meson, Phys. Rev. 145, 1050 – Published 27 May 1966 (doi:10.1103/PhysRev.145.1050)

  • M. Feldman, W. Frati, R. Gleeson, J. Halpern, M. Nussbaum, S. Richert, Neutral Decay of the ω\omega Meson, Phys. Rev. 159, 1219 (1967) (doi10.1103/PhysRev.159.1219, spire:52556)

  • W. Deinet A. Menzione H.Müller, H. M.Staudenmaier, S.Buniatov, D.Schmitt, Neutral decay modes of the ω 0\omega^0-meson, Physics Letters B Volume 30, Issue 6, 10 November 1969, Pages 426-429 (doi:10.1016/0370-2693(69)90479-1)

  • F. M. Renard, The reaction e +e π 0+ω(π +π π 0)e^+ e^- \to \pi^0 + \omega(\pi^+ \pi^- \pi^0) and the ω\omega-ρ\rho-π\pi coupling, Nuovo Cimento A (1965-1970) 64, 979–984 (1969) (doi:10.1007/BF02758844)

  • M. K. Volkov, D. Ebert, M. Nagy, Excited pions, ρ\rho- and ω\omega-mesons and their decays in a chiral SU(2)×SU(2)SU(2) \times SU(2) Lagrangian, Int. J. Mod. Phys. A13 (1998) 5443-5458 (arXiv:hep-ph/9705334)

  • S. I. Dolinsky, et al., Radiative Decays of ρ\rho and ω\omega Mesons, Z. Phys. C42 (1989) 511 (spire:264694, doi:10.1007/BF01557655)

  • J. T. Dakin, M. G. Hauser, M. N. Kreisler, R. E. Mischke, Measurement of the Branching Ratios for ω Neutral Decays, Phys. Rev. D 6, 2321 (1972) (doi:10.1103/PhysRevD.6.2321)

  • Dafne Guetta, Paul Singer, ω\omega-ρ\rho Mixing and the ωππγ\omega \to \pi \pi \gamma Decay, Phys. Rev. D63 (2001) 017502 (arXiv:hep-ph/0005059)

  • Roland Kaiser, equation (12) of: Anomalies and WZW-term of two-flavour QCD, Phys. Rev. D63:076010, 2001 (arXiv:hep-ph/0011377)

  • A. Gokalp, A. Kucukarslan, S. Solmaz, O. Yilmaz, σ\sigma-Meson and ω\omega-ρ\rho mixing effects in ωπ +π γ\omega \to \pi^+ \pi^- \gamma decay, Acta Phys.Polon. B34 (2003) 4095-4104 (arXiv:hep-ph/0306044)

  • Jeffrey Harvey, Christopher T. Hill, Richard J. Hill, Section II.B of: Standard Model Gauging of the WZW Term: Anomalies, Global Currents and pseudo-Chern-Simons Interactions, Phys. Rev. D77:085017, 2008 (arXiv:0712.1230)

  • S. Leupold, M. F. M. Lutz, Hadronic three-body decays of light vector mesons, Eur. Phys. J. A39:205-212, 2009 (arXiv:0807.4686)

  • Florian Jonas, Measurement of ω\omega and η\eta mesons via their three pion decay with ALICE in pp collisions at s=tTeV\sqrt{s} = t TeV, 2018 (cds:2653176)

In holographic QCD

The omega-meson in holographic QCD (Witten-Sakai-Sugimoto model):

Mediating baryon interaction

On sigma-mesons and omega-mesons mediating baryon interaction, discussed in holographic QCD via D3-D7 brane intersections:

Last revised on June 2, 2020 at 14:20:50. See the history of this page for a list of all contributions to it.