nLab
infinity-action

Contents

Idea

The notion of \infty-action is the notion of action (module/representation) in homotopy theory/(∞,1)-category theory, from algebra to higher algebra.

Notably a monoid object in an (∞,1)-category AA may act on another object NN by a morphism ANNA \otimes N \to N which satisfies an action property up to coherent higher homotopy.

If the \infty-action is suitably linear in some sense, this is also referred to as ∞-representation.

Definition

We discuss the actions of ∞-groups in an (∞,1)-topos. (For groupoid ∞-actions see there.)

Let H\mathbf{H} be an (∞,1)-topos.

Let GGrp(H)G \in Grp(\mathbf{H}) be an group object in an (∞,1)-category in H\mathbf{H}, hence a homotopy-simplicial object on H\mathbf{H} of the form

(G×GG*) \left( \cdots \stackrel{\to}{\stackrel{\to}{\stackrel{\to}{\to}}} G \times G \stackrel{\to}{\stackrel{\to}{\to}} G \stackrel{\to}{\to} * \right)

satisfying the groupoidal Segal conditions.

hence an ∞-group.

Definition

An action (or \infty-action, for emphasis) of GG on an object VHV \in \mathbf{H} is a groupoid object in an (∞,1)-category which is equivalent to one of the form

(V×G×GV×Gp 1ρV) \left( \cdots \stackrel{\to}{\stackrel{\to}{\stackrel{\to}{\to}}} V \times G \times G \stackrel{\to}{\stackrel{\to}{\to}} V \times G \stackrel{\overset{\rho}{\to}}{\underset{p_1}{\to}} V \right)

such that the projection maps

V×G×G V×G p 1ρ V G×G G * \array{ \cdots &\stackrel{\to}{\stackrel{\to}{\stackrel{\to}{\to}}}& V \times G \times G &\stackrel{\to}{\stackrel{\to}{\to}}& V \times G &\stackrel{\overset{\rho}{\to}}{\underset{p_1}{\to}}& V \\ && \downarrow && \downarrow && \downarrow \\ \cdots &\stackrel{\to}{\stackrel{\to}{\stackrel{\to}{\to}}}& G \times G &\stackrel{\to}{\stackrel{\to}{\to}}& G &\stackrel{\overset{}{\to}}{\underset{}{\to}}& * }

constitute a morphism of groupoid objects VG*GV\sslash G \to *\sslash G.

The (∞,1)-category of such actions is the slice of groupoid objects over *G*\sslash G on these objects.

There is an equivalent formulation which does not invoke the notion of groupoid object in an (∞,1)-category explicitly. This is based on the fundamental fact, discussed at ∞-group, that delooping constitutes an equivalence of (∞,1)-categories

B:Grp(H)H 1 */. \mathbf{B} : Grp(\mathbf{H}) \to \mathbf{H}^{*/}_{\geq 1} \,.

form group objects in an (∞,1)-category to the (∞,1)-category of connected pointed objects in H\mathbf{H}.

Proposition

Every \infty-action ρ:V×GV\rho : V \times G \to V has a classifying morphism c ρ:VGBG\mathbf{c}_\rho : V \sslash G \to \mathbf{B}G in that there is a fiber sequence

V VG ρ¯ BG \array{ V \\ \downarrow \\ V \sslash G &\stackrel{\overline{\rho}}{\to}& \mathbf{B}G }

such that ρ\rho is the GG-action on VV regarded as the corresponding GG-principal ∞-bundle modulated by ρ¯\overline{\rho}.

This allows to characterize \infty-actions in the following convenient way. See (NSS) for a detailed discussion.

Definition

For VHV \in \mathbf{H} an object, a GG-\infty-action ρ\rho on VV is a fiber sequence in H\mathbf{H} of the form

V VG ρ¯ BG. \array{ V &\to& V \sslash G \\ && \downarrow^{\mathrlap{\overline{\rho}}} \\ && \mathbf{B}G } \,.

The (∞,1)-category of GG-actions in H\mathbf{H} is the slice (∞,1)-topos of H\mathbf{H} over BG\mathbf{B}G:

Act H(G)H /BG. Act_{\mathbf{H}}(G) \coloneqq \mathbf{H}_{/\mathbf{B}G} \,.
Remark

A ρAct H(G)\rho \in Act_{\mathbf{H}}(G) corresponds to a morphism denoted ρ¯:VGBG\overline{\rho} : V\sslash G \to \mathbf{B}G in H\mathbf{H} hence to an object ρ¯H /BG\overline{\rho} \in \mathbf{H}_{/\mathbf{B}G}.

A morphism ϕ:ρ 1ρ 2\phi : \rho_1 \to \rho_2 in Act H(G)Act_{\mathbf{H}}(G) corresponds to a diagram

V 1G V 2G ρ 1¯ ρ 2¯ BG \array{ V_1 \sslash G &&\stackrel{}{\to}&& V_2 \sslash G \\ & {}_{\mathllap{\overline{\rho_1}}}\searrow && \swarrow_{\mathrlap{\overline{\rho_2}}} \\ && \mathbf{B}G }

in H\mathbf{H}.

Remark

The bundle ρ¯\overline{\rho} in def. 2 is the universal ρ\rho-associated VV-fiber ∞-bundle.

Remark

In the form of def. 2 \infty-actions have a simple formulation in the internal language of homotopy type theory: a GG-action on VV is simply a dependent type over BG\mathbf{B}G with fiber VV:

*:BGV(*):Type. * : \mathbf{B}G \vdash V(*) : Type \,.

Notions in higher representation theory

We discuss some basic representation theoretic notions of \infty-actions.

In summary, for c:BGV(c):Type\mathbf{c} : \mathbf{B}G \vdash V(\mathbf{c}) : Type an action of GG on VV, we have

And for V 1,V 2V_1, V_2 two actions we have

Invariants

Definition

The invariants (homotopy fixed points) of a GG-\infty-action ρ\rho are the sections of the morphism VGBGV \sslash G \to \mathbf{B}G,

Invariants(V)= BG*(VGBG), Invariants(V) = \prod_{\mathbf{B}G \to *} (V \sslash G \to \mathbf{B}G) \,,

where BG*:H /BGH\prod_{\mathbf{B}G \to *} : \mathbf{H}_{/\mathbf{B}G} \to \mathbf{H} is the direct image of the base change geometric morphism.

In homotopy type theory syntax for

c:BGV(c):Type \mathbf{c} : \mathbf{B}G \vdash V(\mathbf{c}) : Type

an action as in remark 3, its type of invariants is the dependent product

c:BGV(c):Type. \vdash \prod_{\mathbf{c} : \mathbf{B}G} V(\mathbf{c}) : Type \,.
Remark

This is the internal limit in H\mathbf{H} of the internal diagram

ρ:BGType. \rho \colon \mathbf{B}G \to Type \,.

See at internal limit – Examples – Homotopy Invariants.

Coinvariants / Quotients

From def. 2 we read off:

Definition

The quotient of a GG-action

c:BGV(c):Type \mathbf{c} : \mathbf{B}G \vdash V(\mathbf{c}) : Type

is the dependent sum

c:BGV(c):Type. \vdash \sum_{\mathbf{c} : \mathbf{B}G} V(\mathbf{c}) : Type \,.
Remark

This is the internal colimit in H\mathbf{H} of the internal diagram

ρ:BGType. \rho \colon \mathbf{B}G \to Type \,.

See at internal limit – Examples – Homotopy Coinvariants.

Conjugation actions

Remark

By def. 2, and basic facts disussed at slice (∞,1)-topos, the (∞,1)-category Act H(G)Act_{\mathbf{H}}(G) is an (∞,1)-topos and in particular is a cartesian closed (∞,1)-category.

We describe here aspects of the cartesian product and internal hom of \infty-actions given this way. The following statements are essentially immediate consequences of basic homotopy type theory.

Proposition

For (V 1,ρ 1),(V 2,ρ 2)Act(G)(V_1, \rho_1), (V_2, \rho_2) \in Act(G) their cartesian product is a GG-action on the product of V 1V_1 with V 2V_2 in H\mathbf{H}.

Proof

Let

V i V iG ρ¯ i BG \array{ V_i &\to& V_i \sslash G \\ && \downarrow^{\bar \rho_i} \\ && \mathbf{B}G }

be the principal ∞-bundles exhibiting the two actions.

Along the lines of the discussion at locally cartesian closed category we find that (V 1,ρ 1)×(V 2,ρ 2)Act(G)(V_1, \rho_1) \times (V_2, \rho_2) \in Act(G) is given in H\mathbf{H} by the (∞,1)-pullback

BGρ¯ 1×ρ¯ 2V 1G× BGV 2G \sum_{\mathbf{B}G} \bar \rho_1 \times \bar \rho_2 \simeq V_1\sslash G \times_{\mathbf{B}G} V_2 \sslash G

in H\mathbf{H}, with the product action being exhibited by the principal ∞-bundle

V 1×V 2 V 1G× BGV 2G ρ 1×ρ 2¯ BG. \array{ V_1 \times V_2 &\to& V_1\sslash G \times_{\mathbf{B}G} V_2 \sslash G \\ && \downarrow^{\mathrlap{\overline{ \rho_1 \times \rho_2 }}} \\ && \mathbf{B}G } \,.

Here the homotopy fiber on the left is identified as V 1×V 2V_1 \times V_2 by using that (∞,1)-limits commute over each other.

Proposition

For ρ 1,ρ 2Act(G)\rho_1, \rho_2 \in Act(G) their internal hom [ρ 1,ρ 2]Act H(G)[\rho_1, \rho_2] \in Act_{\mathbf{H}}(G) is a GG-action on the internal hom [V 1,V 2]H[V_1, V_2] \in \mathbf{H}.

Proof

Taking fibers

pt BG *:H /BGH pt_{\mathbf{B}G}^* : \mathbf{H}_{/\mathbf{B}G} \to \mathbf{H}

is the inverse image of an etale geometric morphism, hence is a cartesian closed functor (see the Examples there for details). Therefore it preserves exponential objects:

pt BG *[ρ¯ 1,ρ¯ 2] [pt BG *ρ¯ 1,pt BG *ρ¯ 2] [V 1,V 2]. \begin{aligned} pt_{\mathbf{B}G}^* [\bar \rho_1, \bar \rho_2] & \simeq [pt_{\mathbf{B}G}^* \bar \rho_1, pt_{\mathbf{B}G}^* \bar \rho_2] \\ & \simeq [V_1, V_2] \end{aligned} \,.
Remark

The above internal-hom action

[V 1,V 2] V 1G× BGV 2G [ρ 1,ρ 2]¯ BG \array{ [V_1,V_2] &\to& V_1 \sslash G \times_{\mathbf{B}G} V_2 \sslash G \\ && \downarrow^{\mathrlap{\overline{[\rho_1,\rho_2]}}} \\ && \mathbf{B}G }

encodes the conjugation action of GG on [V 1,V 2][V_1, V_2] by pre- and post-composition of functions V 1V 2V_1 \to V_2 with the GG-action on V 1V_1 and on V 2V_2, respectively.

See also at Conjugation actions below.

Internal object of homomorphisms

Remark

The invariant, def. 3 of the conjugation action, prop. 3 are the action homomorphisms. (See also at Examples - Conjugation actions.)

Therefore

Definition

For ρ¯ i:V iGBG\bar \rho_i : V_i \sslash G \to \mathbf{B}G two GG-actions, the object of homomorphisms is

BG*[ρ¯ 1,ρ¯ 2]H. \prod_{\mathbf{B}G \to *}[\bar \rho_1, \bar \rho_2] \in \mathbf{H} \,.

In the syntax of homotopy type theory

c:BGV 1(c)V 2(c):Type. \vdash \prod_{\mathbf{c} : \mathbf{B}G} V_1(\mathbf{c}) \to V_2(\mathbf{c}) : Type \,.

Stabilizer subgroups

See at stabilizer subgroup.

Examples

Of \infty-group actions in an \infty-topos

Let H\mathbf{H} be an (∞,1)-topos and let GGrp(H)G \in Grp(\mathbf{H}) be an ∞-group in H\mathbf{H}.

The following lists some fundamental classes of examples of \infty-actions of GG, and of other canonical \infty-groups. By the discussion above these actions may be given by the classifying morphisms.

Trivial action

Consider the étale geometric morphism

Act H(G)H /BGp *()×BGH. Act_{\mathbf{H}}(G) \coloneqq \mathbf{H}_{/\mathbf{B}G} \stackrel{\overset{p^* \coloneqq (-) \times \mathbf{B}G}{\leftarrow}}{\underset{}{\to}} \mathbf{H} \,.
Definition

For VHV \in \mathbf{H} any object, the trivial action of GG on VV is p *VAct H(G)p^* V \in Act_{\mathbf{H}}(G), exhibited by the split fiber sequence

V V×BG BG. \array{ V &\to& V \times \mathbf{B}G \\ && \downarrow \\ && \mathbf{B}G } \,.

Fundamental action

The right \infty-action of GG on itself is given by the fiber sequence

G * BG \array{ G \\ \downarrow \\ * &\to& \mathbf{B}G }

which exhibits BG\mathbf{B}G as the delooping of GG.

GG*. G \sslash G \simeq * \,.

Adjoint action

The fiber sequence

G BG ev * BG \array{ G \\ \downarrow \\ \mathcal{L} \mathbf{B}G &\stackrel{ev_*}{\to}& \mathbf{B}G }

given by the free loop space object BG\mathcal{L}\mathbf{B}G exhibits the higher adjoint action of GG on itself:

G AdGBG. G \sslash_{Ad}G \simeq \mathcal{L}\mathbf{B}G \,.

Automorphism action

Definition

For VHV \in \mathbf{H} any object, there is a canonical action of the internal automorphism infinity-group Aut(V)\mathbf{Aut}(V):

V VAut(V) BAut(V) \array{ V \\ \downarrow \\ V \sslash \mathbf{Aut}(V) &\to& \mathbf{B} \mathbf{Aut}(V) }

Conjugation actions

We discuss the simple case of the cartesian closed category of GG-sets (G-permutation representations) for GG an ordinary discrete group as a simple illustration of the internal hom of \infty-actions, prop. 3.

This example spells out everything completely in components:

Example

Let H=\mathbf{H} = ∞Grpd, let GGrp(Grpd)G \in Grp(\infty Grpd) be an ordinary discrete group and let V,Σ,XV, \Sigma, X be sets equipped with GG-action (permutation representations).

In this case [Σ,X][\Sigma,X] is simply the set of functions f:ΣXf : \Sigma \to X of sets. Its GG-action as the internal hom of GG-actions given, for every gGg \in G and σΣ\sigma \in \Sigma, by

g(f)(σ)=g(f(g 1(σ))), g(f)(\sigma) = g(f(g^{-1}(\sigma))) \,,

(where we write generically g()g(-) for the given action on the set specified implicitly by the type of the argument).

Hence a morphism of GG-actions

ϕ:V[Σ,X] \phi : V \to [\Sigma,X]

is a function ϕ\phi of the underlying sets such that for all VVV \in V, gGg \in G and all σΣ\sigma \in \Sigma we have

(1)ϕ(g(v))(σ)=g(ϕ(v)(g 1(σ)). \phi(g(v))(\sigma) = g(\phi(v)(g^{-1}(\sigma)) \,.

On the other hand, a morphism of actions

ψ:V×ΣX \psi : V \times \Sigma \to X

is a function of the underlying sets, such that for all these terms we have

ψ(g(v),g(σ))=g(ψ(v,σ)) \psi(g(v), g(\sigma)) = g(\psi(v,\sigma))

which is equivalent to

(2)ψ(g(v),σ)=g(ψ(v,g 1(σ))). \psi(g(v), \sigma) = g(\psi(v,g^{-1}(\sigma))) \,.

Comparison of (1) and (2) shows that the identification

ψ(v,σ)ϕ(v)(σ) \psi(v,\sigma) \coloneqq \phi(v)(\sigma)

establishes a natural equivalence (a natural bijection of sets in this case)

Act H(G)(V,[Σ,X])Act H(G)(V×Σ,X]), Act_{\mathbf{H}}(G)(V, [\Sigma,X]) \simeq Act_{\mathbf{H}}(G)(V \times \Sigma, X]) \,,

showing how [Σ,X][\Sigma,X] is indeed the internal hom of GG-actions.

Remark

Generally, for GG a discrete ∞-group we have an equivalence of (∞,1)-categories

Grpd /BGFunc(BG,Grpd) \infty Grpd_{/\mathbf{B}G} \simeq \infty Func(\mathbf{B}G, \infty Grpd)

(by the (∞,1)-Grothendieck construction), and hence

Act Grpd(G)Func(BG,Grpd) Act_{\infty Grpd}(G) \simeq \infty Func(\mathbf{B}G, \infty Grpd)

is the (∞,1)-category of ∞-permutation representations.

General covariance

Let XHX \in \mathbf{H} be a moduli infinity-stack for field in a gauge theory or sigma-model. Let ΣH\Sigma \in \mathbf{H} be the corresponding spacetime or worldvolume, respectively.

We have the automorphism action, def. 7

Σ ΣAut(Σ) BAut(Σ). \array{ \Sigma &\to& \Sigma \sslash \mathbf{Aut}(\Sigma) \\ && \downarrow \\ && \mathbf{B} \mathbf{Aut}(\Sigma) } \,.

The slice H /Aut(Σ)=Act H(Aut(Σ))\mathbf{H}_{/\mathbf{Aut}(\Sigma)} = Act_{\mathbf{H}}(\mathbf{Aut}(\Sigma)) is the context of types which are generally covariant over Σ\Sigma.

On XX consider the trivial Aut(Σ)\mathbf{Aut}(\Sigma)-action, def. 6. Then the internal-hom action of prop. 3

[Σ,X]Aut(Σ)[ΣAut(Σ),X×BAut(Σ)] BAut(Σ) [\Sigma, X]\sslash \mathbf{Aut}(\Sigma) \simeq [\Sigma \sslash \mathbf{Aut}(\Sigma), X \times \mathbf{B}\mathbf{Aut}(\Sigma)]_{\mathbf{B}\mathbf{Aut}(\Sigma)}

is the configuration space of fields on Σ\Sigma modulo automorphisms (diffeomorphisms, in smooth cohesion) of Σ\Sigma. This is the configuration space of “generally covariant” field theory on Σ\Sigma.

Semidirect product groups

Let G,AGrp(H)G, A \in Grp(\mathbf{H}) be 0-truncated group objects and let ρ\rho be an action of GG on AA by group homomorphisms. This is equivalently an action of GG on BA\mathbf{B}A, hence a fiber sequence

BA B(GA) BG. \array{ \mathbf{B}A &\to& \mathbf{B} (G \ltimes A) \\ && \downarrow \\ && \mathbf{B}G } \,.

The corresponding action groupoid (BA)GB(GA)(\mathbf{B}A)\sslash G \simeq \mathbf{B}( G \ltimes A) is the delooping of the corresponding semidirect product group.

GG-Modules

Definition

For GGrp(H)G \in Grp(\mathbf{H}) the \infty-category of GG-modules is

Stab(H /BG)Stab(GAct), Stab( \mathbf{H}_{/\mathbf{B}G}) \simeq Stab(G Act) \,,

the stabilization of the \infty-category of GG-actions.

Example

For GG and AA 0-truncated groups, AA an abelian group with GG-module structure, the semidirect product group GAG \ltimes A from above exhibits AA as a GG-module in the sense of def. 8.

Actions in a slice

Consider an object BHB \in \mathbf{H} and an object

LH /B L \in \mathbf{H}_{/B}

in the slice. By the discussion of conjugation actions above, the automorphism ∞-group of LL as an object in H\mathbf{H} is the dependent product over the automorphism ∞-group Aut H(L)H /B\mathbf{Aut}_{\mathbf{H}}(L)\in \mathbf{H}_{/B} in the slice.

Aut H(L)BAut(L)Grp(H). \mathbf{Aut}_{\mathbf{H}}(L) \coloneqq \underset{B}{\prod} \mathbf{Aut}(L) \in \mathrm{Grp}(\mathbf{H}) \,.

By adjunction there is a canonical morphism from the re-pullback of this to the slice automorphism group

ϵ:B *BAut H(L)BAut(L). \epsilon \colon B^\ast \mathbf{B}\mathbf{Aut}_{\mathbf{H}}(L) \longrightarrow \mathbf{B} \mathbf{Aut}(L) \,.

Hence the canonical Aut(L)\mathbf{Aut}(L)-action on LL in the slice pulls back to give an action of B *Aut H(L)B^\ast \mathbf{Aut}_{\mathbf{H}}(L) on LL:

L L//(B *Aut H(L)) L//Aut(L) * BB *Aut H(L) ϵ BAut(L) \array{ L &\longrightarrow& L//(B^\ast\mathbf{Aut}_{\mathbf{H}}(L)) &\longrightarrow& L//\mathbf{Aut}(L) \\ \downarrow && \downarrow && \downarrow \\ \ast &\longrightarrow& \mathbf{B}B^\ast \mathbf{Aut}_{\mathbf{H}}(L) &\stackrel{\epsilon}{\longrightarrow}& \mathbf{B} \mathbf{Aut}(L) }
Proposition

Underlying the B *Aut H(L)B^\ast\mathbf{Aut}_{\mathbf{H}}(L)-action on LL is an Aut H(L)\mathbf{Aut}_{\mathbf{H}}(L)-action on

XBL X \coloneqq \underset{B}{\sum} L

and

B(L//B *Aut H(L))X//Aut H(L) \underset{B}{\sum} \left(L//B^\ast\mathbf{Aut}_{\mathbf{H}}(L)\right) \;\simeq\; X//\mathbf{Aut}_{\mathbf{H}}(L)
Proof

Applying B\underset{B}{\sum} to the Cartesian diagram that defines the \infty-action on LL

L L//Aut H(L) * BB *Aut H(L) \array{ L &\longrightarrow& L//\mathbf{Aut}_{\mathbf{H}}(L) \\ \downarrow && \downarrow \\ \ast &\longrightarrow& \mathbf{B}B^\ast \mathbf{Aut}_{\mathbf{H}}(L) }

yields

X X(L//Aut H(L)) B BB *BAut H(L) \array{ X &\longrightarrow& \underset{X}{\sum} \left( L//\mathbf{Aut}_{\mathbf{H}}(L) \right) \\ \downarrow && \downarrow \\ B &\longrightarrow& \underset{B}{\sum} B^\ast \mathbf{B} \mathbf{Aut}_{\mathbf{H}}(L) }

which is still Cartesian, by this proposition. Use that the bottom left object here is equivalently BBB *(*)B \simeq \underset{B}{\sum} B^\ast (\ast) and form the pasting with the naturality square of the (BB *)(\underset{B}{\sum}\dashv B^\ast)-counit.

X B(L//Aut H(L)) BB ** BB *BAut H(L) * BAut H(L). \array{ X &\longrightarrow& \underset{B}{\sum} \left(L//\mathbf{Aut}_{\mathbf{H}}(L)\right) \\ \downarrow && \downarrow \\ \underset{B}{\sum}B^\ast \ast &\longrightarrow& \underset{B}{\sum}B^\ast \mathbf{B}\mathbf{Aut}_{\mathbf{H}}(L) \\ \downarrow && \downarrow \\ \ast &\longrightarrow& \mathbf{B}\mathbf{Aut}_{\mathbf{H}}(L) } \,.

By this proposition also this naturality square is Cartesian. Hence by the pasting law the total rectangle is Cartesian. This exhibits the Aut H(L)\mathbf{Aut}_{\mathbf{H}}(L)-action on X=BLX = \underset{B}{\sum} L.

Remark

Stated more intuitively, prop. 4 says that sliced automorphisms of the form

Aut H(L)={X X L L B} \mathbf{Aut}_{\mathbf{H}}(L) = \left\{ \array{ X & & \stackrel{\simeq}{\longrightarrow} & & X \\ & {}_{\mathllap{L}}\searrow &\swArrow_{\simeq}& \swarrow_{\mathrlap{L}} \\ && B } \right\}

act on XX by the evident restriction to the horizontal equivalences,

{X X} \left\{ \array{ X & & \stackrel{\simeq}{\longrightarrow} & & X } \right\}

and that forming the homotopy quotient of this action on LL makes LL descent to the homotopy quotient of XX by this action to yield

X//Aut H(L) L//Aut H(L) B. \array{ X // \mathbf{Aut}_{\mathbf{H}}(L) \\ \downarrow^{\mathrlap{L//\mathbf{Aut}_{\mathbf{H}}(L)}} \\ B } \,.

(For instance if here BB is a moduli stack for some prequantum n-bundles, then this says that the quantomorphism n-group acting on this gives higher and pre-quantized “symplectic reduction” of these bundles to the quotient space.)

Infinitesimally: actions of L L_\infty-algebroids

See Lie infinity-algebroid representation.

Properties

Model category presentation

In the context of geometrically discrete ∞-groupoids a model category structure presenting the (∞,1)-category of \infty-actions is the Borel model structure (DDK 80).

representation theory and equivariant cohomology in terms of (∞,1)-topos theory/homotopy type theory:

homotopy type theoryrepresentation theory
pointed connected context BG\mathbf{B}G∞-group GG
dependent type∞-action/∞-representation
dependent sum along BG*\mathbf{B}G \to \astcoinvariants/homotopy quotient
context extension along BG*\mathbf{B}G \to \asttrivial representation
dependent product along BG*\mathbf{B}G \to \asthomotopy invariants/∞-group cohomology
dependent product of internal hom along BG*\mathbf{B}G \to \astequivariant cohomology
dependent sum along BGBH\mathbf{B}G \to \mathbf{B}Hinduced representation
context extension along BGBH\mathbf{B}G \to \mathbf{B}H
dependent product along BGBH\mathbf{B}G \to \mathbf{B}Hcoinduced representation
spectrum object in context BG\mathbf{B}Gspectrum with G-action (naive G-spectrum)

References

General

Actions of A-∞ algebras in some symmetric monoidal (∞,1)-category are discussed in section 4.2 of

Aspects of actions of ∞-groups in an ∞-topos in the contect of associated ∞-bundles are discussed in section I 4.1 of

For discrete geometry

For H=Grpd\mathbf{H}= \infty Grpd the statement that homotopy types over BGB G are equivalently GG-infinity-actions is (via the Borel model structure) due to

  • E. Dror, William Dwyer, and Daniel Kan, Equivariant maps which are self homotopy equivalences, Proc. Amer. Math. Soc. 80 (1980), no. 4, 670–672 (JSTOR)

This is mentioned for instance as exercise 4.2in

  • William Dwyer, Homotopy theory of classifying spaces, Lecture notes Copenhagen (June, 2008) pdf

Closely related discussion of homotopy fiber sequences and homotopy action but in terms of Segal spaces is in section 5 of

There, conditions are given for a morphism A B A_\bullet \to B_\bullet to a reduced Segal space to have a fixed homotopy fiber, and hence encode an action of the loop group of BB on that fiber.

For actions of topological groups

That GG-actions for GG a topological group in the sense of G-spaces in equivariant homotopy theory (and hence with GG not regarded as the geometrically discrete ∞-group of its underying homotopy type ) are equivalently objects in the slice (∞,1)-topos over BG\mathbf{B}G is Elmendorf's theorem together with the fact, highlighted in this context in

that

GSpacePSh (Orb G)PSh (Orb /BG)PSh (Orb) /BG G Space \simeq PSh_\infty(Orb_G) \simeq PSh_\infty(Orb_{/\mathbf{B}G}) \simeq PSh_\infty(Orb)_{/\mathbf{B}G}

is therefore the slice of the \infty-topos over the global orbit category by BG\mathbf{B}G.

Rezk-global equivariant homotopy theory:

cohesive (∞,1)-toposits (∞,1)-sitebase (∞,1)-toposits (∞,1)-site
global equivariant homotopy theory PSh (Glo)PSh_\infty(Glo)global equivariant indexing category GloGlo∞Grpd PSh (*) \simeq PSh_\infty(\ast)point
sliced over terminal orbispace: PSh (Glo) /𝒩PSh_\infty(Glo)_{/\mathcal{N}}Glo /𝒩Glo_{/\mathcal{N}}orbispaces PSh (Orb)PSh_\infty(Orb)global orbit category
sliced over BG\mathbf{B}G: PSh (Glo) /BGPSh_\infty(Glo)_{/\mathbf{B}G}Glo /BGGlo_{/\mathbf{B}G}GG-equivariant homotopy theory of G-spaces L weGTopPSh (Orb G)L_{we} G Top \simeq PSh_\infty(Orb_G)GG-orbit category Orb /BG=Orb GOrb_{/\mathbf{B}G} = Orb_G

See at equivariant homotopy theory for more references along these lines.

Revised on November 4, 2014 20:59:53 by Urs Schreiber (141.0.8.155)