nLab
category of presheaves

Context

Topos Theory

topos theory

Background

Toposes

Internal Logic

Topos morphisms

Extra stuff, structure, properties

Cohomology and homotopy

In higher category theory

Theorems

Category Theory

Contents

Definition

For CC a small category, its category of presheaves is the functor category

PSh(C):=[C op,Set] PSh(C) := [C^{op}, Set]

from the opposite category of CC to Set.

An object in this category is a presheaf. See there for more details.

Properties

General

Functoriality

See functoriality of categories of presheaves.

Characterization

Theorem

A category EE is equivalent to a presheaf topos if and only if it is cocomplete, atomic, and regular.

This is due to Marta Bunge.

Cartesian closed monoidal structure

As every topos, a category of presheaves is a cartesian closed monoidal category.

For details on the closed structure see

Presheaves on over-categories and over-categories of presheaves

Let CC be a category, cc an object of CC and let C/cC/c be the over category of CC over cc. Write PSh(C/c)=[(C/c) op,Set]PSh(C/c) = [(C/c)^{op}, Set] for the category of presheaves on C/cC/c and write PSh(C)/Y(y)PSh(C)/Y(y) for the over category of presheaves on CC over the presheaf Y(c)Y(c), where Y:CPSh(c)Y : C \to PSh(c) is the Yoneda embedding.

Proposition

There is an equivalence of categories

e:PSh(C/c)PSh(C)/Y(c). e : PSh(C/c) \stackrel{\simeq}{\to} PSh(C)/Y(c) \,.
Proof

The functor ee takes FPSh(C/c)F \in PSh(C/c) to the presheaf F:d fC(d,c)F(f)F' : d \mapsto \sqcup_{f \in C(d,c)} F(f) which is equipped with the natural transformation η:FY(c)\eta : F' \to Y(c) with component map η d fC(d,c)F(f)C(d,c)\eta_d \sqcup_{f \in C(d,c)} F(f) \to C(d,c).

A weak inverse of ee is given by the functor

e¯:PSh(C)/Y(c)PSh(C/c) \bar e : PSh(C)/Y(c) \to PSh(C/c)

which sends η:FY(C)) \eta : F' \to Y(C)) to FPSh(C/c)F \in PSh(C/c) given by

F:(f:dc)F(d) c, F : (f : d \to c) \mapsto F'(d)|_c \,,

where F(d) cF'(d)|_c is the pullback

F(d) c F(d) η d pt f C(d,c). \array{ F'(d)|_c &\to& F'(d) \\ \downarrow && \downarrow^{\eta_d} \\ pt &\stackrel{f}{\to}& C(d,c) } \,.
Example

Suppose the presheaf FPSh(C/c)F \in PSh(C/c) does not actually depend on the morphsims to CC, i.e. suppose that it factors through the forgetful functor from the over category to CC:

F:(C/c) opC opSet. F : (C/c)^{op} \to C^{op} \to Set \,.

Then F(d)= fC(d,c)F(f)= fC(d,c)F(d)C(d,c)×F(d) F'(d) = \sqcup_{f \in C(d,c)} F(f) = \sqcup_{f \in C(d,c)} F(d) \simeq C(d,c) \times F(d) and hence F=Y(c)×FF ' = Y(c) \times F with respect to the closed monoidal structure on presheaves.

See also functors and comma categories.

For the analog statement in (∞,1)-category theory see

Models in presheaf toposes

See at models in presheaf toposes.

For (∞,1)-category theory see (∞,1)-category of (∞,1)-presheaves.

References

Locally presentable categories: Large categories whose objects arise from small generators under small relations.

(n,r)-categoriessatisfying Giraud's axiomsinclusion of left exaxt localizationsgenerated under colimits from small objectslocalization of free cocompletiongenerated under filtered colimits from small objects
(0,1)-category theory(0,1)-toposes\hookrightarrowalgebraic lattices\simeq Porst’s theoremsubobject lattices in accessible reflective subcategories of presheaf categories
category theorytoposes\hookrightarrowlocally presentable categories\simeq Adámek-Rosický’s theoremaccessible reflective subcategories of presheaf categories\hookrightarrowaccessible categories
model category theorymodel toposes\hookrightarrowcombinatorial model categories\simeq Dugger’s theoremleft Bousfield localization of global model structures on simplicial presheaves
(∞,1)-topos theory(∞,1)-toposes\hookrightarrowlocally presentable (∞,1)-categories\simeq
Simpson’s theorem
accessible reflective sub-(∞,1)-categories of (∞,1)-presheaf (∞,1)-categories\hookrightarrowaccessible (∞,1)-categories

Revised on April 17, 2014 21:05:06 by Adeel Khan (132.252.249.179)