nLab
axiom

Context

Type theory

natural deduction metalanguage, practical foundations

  1. type formation rule
  2. term introduction rule
  3. term elimination rule
  4. computation rule

type theory (dependent, intensional, observational type theory, homotopy type theory)

syntax object language

computational trinitarianism = propositions as types +programs as proofs +relation type theory/category theory

logiccategory theorytype theory
trueterminal object/(-2)-truncated objecth-level 0-type/unit type
falseinitial objectempty type
proposition(-1)-truncated objecth-proposition, mere proposition
proofgeneralized elementprogram
cut rulecompositionsubstitution
cut elimination for implicationcounit for hom-tensor adjunctionbeta reduction
introduction rule for implicationunit for hom-tensor adjunctioneta conversion
conjunctionproductproduct type
disjunctioncoproduct ((-1)-truncation of)sum type (bracket type of)
implicationinternal homfunction type
negationinternal hom into initial objectfunction type into empty type
universal quantificationdependent productdependent product type
existential quantificationdependent sum ((-1)-truncation of)dependent sum type (bracket type of)
equivalencepath space objectidentity type
equivalence classquotientquotient type
inductioncolimitinductive type, W-type, M-type
higher inductionhigher colimithigher inductive type
completely presented setdiscrete object/0-truncated objecth-level 2-type/preset/h-set
setinternal 0-groupoidBishop set/setoid
universeobject classifiertype of types
modalityclosure operator monadmodal type theory, monad (in computer science)
linear logic(symmetric, closed) monoidal categorylinear type theory/quantum computation
proof netstring diagramquantum circuit
(absence of) contraction rule(absence of) diagonalno-cloning theorem

homotopy levels

semantics

Contents

Idea

An axiom is a proposition in logic that a given theory requires to be true: every model of the theory is required to make the axiom hold true. The sense however is that an axiom is a basic true proposition, used to prove other true propositions (the theorems) in the theory.

Definition

Given a language LL (perhaps specified by a signature: a collection of types, function symbols and relation symbols), a theory is the collection of assertions which are derivable (using the rules of deduction of the ambient logic or deductive system) from a given set of assertions, called axioms of the theory. In other words, a theory is generated from a set of axioms, by starting with those axioms and applying rules of deduction?, much as terms in an algebraic system may be generated from a set of basic terms by applying operations. Axioms should therefore be considered as presenting a theory; different axiom sets may well give the same theory.

In terms of a deductive system, axioms can be regarded as “rules with zero hypotheses”. The form of such axioms depends on the details of the deductive system used: it could be natural deduction, sequent calculus, a Hilbert system?, etc. If we take sequent calculus, for instance, then any collection of sequents written in the given language LL

ϕ xψ \vec{\phi} \vdash_{\vec x} \vec{\psi}

(asserting that “If every proposition ϕ i\phi_i is true in context x\vec{x} then also some ψ i\psi_i is/has to be true”) can be taken as a collection of axioms for some theory. Models of the theory will then be those structures of the language in which the axioms are interpreted as true statements. For example, a model of group theory is a structure in the language of groups for which the group theory axioms hold, which is (of course) a group.

Assuming the deductive system is sound?, every sequent which is the conclusion of a valid sequent deduction, starting from the axioms, will also be true in every model. And if the deductive system is also complete?, then every sequent of the language which is true in every model will in fact be provable from the axioms.

Examples

(…)

(…)

References

For instance def. D1.1.6 in

Revised on May 10, 2013 18:29:42 by Urs Schreiber (82.169.65.155)