Homotopy Type Theory Cauchy net > history (Rev #12, changes)

Showing changes from revision #11 to #12: Added | Removed | Changed

Contents

Definition

In premetric spaces

Let R R \mathbb{Q} be a dense integral subdomain of therational numbers and let\mathbb{Q} and let R +R_{+} be the positive terms of RR. Let SS be an R +R_{+}-premetric space. A net x:ISx: I \to S is a Cauchy net if

+ x:0<x:ISc(x): ϵ:R + N:I i:I j:I(iN)×(jN)×(x i ϵx j) x:I \mathbb{Q}_{+} \to \coloneqq S \sum_{x:\mathbb{Q}} \vdash 0 c(x):\prod_{\epsilon:R_{+}} \lt \Vert x \sum_{N:I} \prod_{i:I} \prod_{j:I} (i \geq N) \times (j \geq N) \times (x_i \sim_{\epsilon} x_j) \Vert

be the positive rational numbers. Let SS be an premetric space. A net x:ISx: I \to S is a Cauchy net if

x:ISc(x): ϵ: + N:I i:I j:I(iN)×(jN)×(x i ϵx j)x:I \to S \vdash c(x):\prod_{\epsilon:\mathbb{Q}_{+}} \Vert \sum_{N:I} \prod_{i:I} \prod_{j:I} (i \geq N) \times (j \geq N) \times (x_i \sim_{\epsilon} x_j) \Vert

Cauchy approximations

Let R R \mathbb{Q} be a dense integral subdomain of therational numbers and let\mathbb{Q} and let R +R_{+} be the positive terms of RR.

A net x:R +Sx: R_{+} \to S is a R +R_{+}-Cauchy approximation if

+ x:0<x\mathbb{Q}_{+} \coloneqq \sum_{x:\mathbb{Q}} 0 \lt x
x:R +Sc(x): δ:R + η:R +x δ δ+ηx ηx:R_{+} \to S \vdash c(x):\prod_{\delta:R_{+}} \prod_{\eta:R_{+}} x_\delta \sim_{\delta + \eta} x_\eta

be the positive rational numbers.

Every A netR +x: +S R_{+} x: \mathbb{Q}_{+} \to S - is aCauchy approximationCauchy approximation is if a Cauchy net indexed byR +R_{+}. This is because R +R_{+} is a strictly ordered type, and thus a directed type and a strictly codirected type, with N:R +N:R_{+} defined as NδηN \coloneqq \delta \otimes \eta for δ:R +\delta:R_{+} and η:R +\eta:R_{+}. ϵ:R +\epsilon:R_{+} is defined as ϵδ+η\epsilon \coloneqq \delta + \eta.

x: +Sc(x): δ:R + η:R +x δ δ+ηx ηx:\mathbb{Q}_{+} \to S \vdash c(x):\prod_{\delta:R_{+}} \prod_{\eta:R_{+}} x_\delta \sim_{\delta + \eta} x_\eta

Every Cauchy approximation is a Cauchy net indexed by +\mathbb{Q}_{+}. This is because +\mathbb{Q}_{+} is a strictly ordered type, and thus a directed type and a strictly codirected type, with N: +N:\mathbb{Q}_{+} defined as NδηN \coloneqq \delta \otimes \eta for δ:R +\delta:R\mathbb{Q}_{+} and η: +\eta:\mathbb{Q}_{+}. ϵ: +\epsilon:\mathbb{Q}_{+} is defined as ϵδ+η\epsilon \coloneqq \delta + \eta.

In Cauchy spaces

Cauchy sequences

A Cauchy sequence is a Cauchy net whose index type is the natural numbers \mathbb{N}.

See also

Revision on April 14, 2022 at 00:03:39 by Anonymous?. See the history of this page for a list of all contributions to it.