Homotopy Type Theory Cauchy net > history (Rev #12)

Contents

Definition

In premetric spaces

Let \mathbb{Q} be the rational numbers and let

+ x:0<x\mathbb{Q}_{+} \coloneqq \sum_{x:\mathbb{Q}} 0 \lt x

be the positive rational numbers. Let SS be an premetric space. A net x:ISx: I \to S is a Cauchy net if

x:ISc(x): ϵ: + N:I i:I j:I(iN)×(jN)×(x i ϵx j)x:I \to S \vdash c(x):\prod_{\epsilon:\mathbb{Q}_{+}} \Vert \sum_{N:I} \prod_{i:I} \prod_{j:I} (i \geq N) \times (j \geq N) \times (x_i \sim_{\epsilon} x_j) \Vert

Cauchy approximations

Let \mathbb{Q} be the rational numbers and let

+ x:0<x\mathbb{Q}_{+} \coloneqq \sum_{x:\mathbb{Q}} 0 \lt x

be the positive rational numbers.

A net x: +Sx: \mathbb{Q}_{+} \to S is a Cauchy approximation if

x: +Sc(x): δ:R + η:R +x δ δ+ηx ηx:\mathbb{Q}_{+} \to S \vdash c(x):\prod_{\delta:R_{+}} \prod_{\eta:R_{+}} x_\delta \sim_{\delta + \eta} x_\eta

Every Cauchy approximation is a Cauchy net indexed by +\mathbb{Q}_{+}. This is because +\mathbb{Q}_{+} is a strictly ordered type, and thus a directed type and a strictly codirected type, with N: +N:\mathbb{Q}_{+} defined as NδηN \coloneqq \delta \otimes \eta for δ:R +\delta:R\mathbb{Q}_{+} and η: +\eta:\mathbb{Q}_{+}. ϵ: +\epsilon:\mathbb{Q}_{+} is defined as ϵδ+η\epsilon \coloneqq \delta + \eta.

In Cauchy spaces

Cauchy sequences

A Cauchy sequence is a Cauchy net whose index type is the natural numbers \mathbb{N}.

See also

Revision on April 14, 2022 at 00:03:39 by Anonymous?. See the history of this page for a list of all contributions to it.