Homotopy Type Theory Cauchy structure > history (changes)

Showing changes from revision #13 to #14: Added | Removed | Changed

<Cauchy structure

Contents

Whenever editing is allowed on the nLab again, this article should be ported over there.

Definition

In set theory

Let \mathbb{Q} be the rational numbers and let

+{x|0<x}\mathbb{Q}_{+} \coloneqq \{x \in \mathbb{Q} \vert 0 \lt x\}

be the set of positive rational numbers.

A Cauchy structure is a premetric space SS with a function ratS +rat \in S^{\mathbb{Q}_{+}} and a function limS C(S)lim \in S^{C(S)}, where C(S)C(S) is the set of Cauchy approximations in SS, such that

aS.bS.((ϵ +.a ϵb)a=b)\forall a \in S.\forall b \in S.((\forall \epsilon \in \mathbb{Q}_{+}.a \sim_\epsilon b) \implies a = b)
a.b.ϵ +.(|ab|<ϵrat(a) ϵrat(b))\forall a \in \mathbb{Q}.\forall b \in \mathbb{Q}.\forall \epsilon \in \mathbb{Q}_{+}.(\vert a - b \vert \lt \epsilon \implies rat(a) \sim_\epsilon rat(b))
a.bC(S).ϵ +.η +.(rat(a) ϵb(η)rat(a) ϵ+ηlim(b))\forall a \in \mathbb{Q}.\forall b \in C(S).\forall \epsilon \in \mathbb{Q}_{+}.\forall \eta \in \mathbb{Q}_{+}.(rat(a) \sim_\epsilon b(\eta) \implies rat(a) \sim_{\epsilon + \eta} lim(b))
aC(S).b.ϵ +.δ +.(a(δ) ϵrat(b)lim(a) δ+ϵrat(b))\forall a \in C(S).\forall b \in \mathbb{Q}.\forall \epsilon \in \mathbb{Q}_{+}.\forall \delta \in \mathbb{Q}_{+}.(a(\delta) \sim_\epsilon rat(b) \implies lim(a) \sim_{\delta + \epsilon} rat(b))
aC(S).bC(S).ϵ +.δ +.η +.(a(δ) ϵb(η)lim(a) δ+ϵ+ηlim(b))\forall a \in C(S).\forall b \in C(S).\forall \epsilon \in \mathbb{Q}_{+}.\forall \delta \in \mathbb{Q}_{+}.\forall \eta \in \mathbb{Q}_{+}.(a(\delta) \sim_\epsilon b(\eta) \implies lim(a) \sim_{\delta + \epsilon + \eta} lim(b))

For two Cauchy structures SS and TT, a Cauchy structure homomorphism is a function fT Sf\in T^S such that

aS.bS.ϵ +.(a ϵb)(f(a) ϵf(b))\forall a \in S.\forall b \in S.\forall \epsilon \in \mathbb{Q}_{+}.(a \sim_{\epsilon} b) \to (f(a) \sim_{\epsilon} f(b))
r.f(rat(r))=rat(r)\forall r\in \mathbb{Q}.f(rat(r)) = rat(r)
rC(S).f(lim(r))=lim(fr)\forall r\in C(S).f(lim(r)) = lim(f \circ r)
aS.bS.(((ϵ +.a ϵb)a=b)((ϵ +.f(a) ϵf(b))f(a)=f(b))\forall a \in S.\forall b \in S.(((\forall \epsilon \in \mathbb{Q}_{+}.a \sim_\epsilon b) \implies a = b) \implies ((\forall \epsilon \in \mathbb{Q}_{+}.f(a) \sim_\epsilon f(b)) \implies f(a) = f(b))

The category of Cauchy structures is a category CauchyStrCauchyStr whose objects Ob(CauchyStr)Ob(CauchyStr) are Cauchy structures and whose morphisms Mor(A,B)Mor(A, B), for objects AOb(CauchyStr)A \in Ob(CauchyStr) and BOb(CauchyStr)B \in Ob(CauchyStr), are Cauchy structure homomorphisms. The initial object in the category of Cauchy structures is the HoTT book real numbers.

In homotopy type theory

Let \mathbb{Q} be the rational numbers and let

+ x:0<x\mathbb{Q}_{+} \coloneqq \sum_{x:\mathbb{Q}} 0 \lt x

be the positive rational numbers.

A Cauchy structure is a premetric space SS with

  • a function inj:Sinj: \mathbb{Q} \to S

  • a function lim:C(S)Slim: C(S) \to S, where C(S)C(S) is the type of R +R_{+}-Cauchy approximations in SS

  • dependent families of terms

a:S,b:Seq(a,b): ϵ: +(a ϵb)(a= Sb)a:S, b:S \vdash eq(a, b): \Vert \prod_{\epsilon:\mathbb{Q}_{+}} (a \sim_{\epsilon} b) \Vert \to (a =_S b)
a:,b:,ϵ: +μ ,(a,b,ϵ):(|ab|<ϵ)(inj(a) ϵinj(b))a:\mathbb{Q}, b:\mathbb{Q}, \epsilon:\mathbb{Q}_{+} \vdash \mu_{\mathbb{Q}, \mathbb{Q}}(a, b, \epsilon): (\vert a - b \vert \lt \epsilon) \to (inj(a) \sim_{\epsilon} inj(b))
a:,b:C(S),ϵ: +,η: +μ ,C(S)(a,b,ϵ,η):(inj(a) ϵb η)(inj(a) ϵ+ηlim(b))a:\mathbb{Q}, b:C(S), \epsilon:\mathbb{Q}_{+}, \eta:\mathbb{Q}_{+} \vdash \mu_{\mathbb{Q}, C(S)}(a, b, \epsilon, \eta): (inj(a) \sim_{\epsilon} b_{\eta}) \to (inj(a) \sim_{\epsilon + \eta} lim(b))
a:C(S),b:,δ: +,ϵ: +μ C(S),(a,b,δ,ϵ):(a δ ϵinj(b))(lim(a) δ+ϵinj(b))a:C(S), b:\mathbb{Q}, \delta:\mathbb{Q}_{+}, \epsilon:\mathbb{Q}_{+} \vdash \mu_{C(S), \mathbb{Q}}(a, b, \delta, \epsilon): (a_{\delta} \sim_{\epsilon} inj(b) ) \to (lim(a) \sim_{\delta + \epsilon} inj(b))
a:C(S),b:C(S),δ: +,ϵ: +,η: +μ C(S),C(S)(a,b,δ,ϵ,η):(a δ ϵb η)(lim(a) δ+ϵ+ηlim(b))a:C(S), b:C(S), \delta:\mathbb{Q}_{+}, \epsilon:\mathbb{Q}_{+}, \eta:\mathbb{Q}_{+} \vdash \mu_{C(S), C(S)}(a, b, \delta, \epsilon, \eta): (a_{\delta} \sim_{\epsilon} b_{\eta} ) \to (lim(a) \sim_{\delta + \epsilon + \eta} lim(b))

For two Cauchy structures SS and TT, a Cauchy structure homomorphism consists of

  • a function f:STf:S \to T

  • a dependent family of functions

    a:S,b:S,ϵ: +π(a,b,ϵ):(a Sϵb)(f(a) Tϵf(b))a:S, b:S, \epsilon:\mathbb{Q}_{+} \vdash \pi(a, b, \epsilon): (a \sim_{S\epsilon} b) \to (f(a) \sim_{T\epsilon} f(b))
  • a dependent family of types

    r:ι(r):f(inj S(r))=inj T(r)r:\mathbb{Q} \vdash \iota(r): f(inj_S(r)) = inj_T(r)
  • a dependent family of types

    r:C(S)λ(r):f(lim S(r))=lim T(fr)r:C(S) \vdash \lambda(r): f(lim_S(r)) = lim_T(f \circ r)
  • a dependent family of types

    a:S,b:S,c: ϵ: +(a ϵb)η(a,b,c):f(eq S(a,b,c))=eq T(f(a),f(b),f(c))a:S, b:S, c:\Vert \prod_{\epsilon:\mathbb{Q}_{+}} (a \sim_{\epsilon} b) \Vert \vdash \eta(a, b, c): f(eq_S(a, b, c)) = eq_T(f(a), f(b), f(c))

See also

References

  • Auke B. Booij, Analysis in univalent type theory (pdf)

Last revised on June 10, 2022 at 00:43:11. See the history of this page for a list of all contributions to it.