nLab integral Steenrod square

Redirected from "integral Steenrod squares".
Contents

Context

Cohomology

cohomology

Special and general types

Special notions

Variants

Extra structure

Operations

Theorems

Contents

Definition

Definition

(integral Steenrod squares)

For odd 2n+12n + 1 \in \mathbb{N} the integral Steenrod square Sq 2n+1Sq^{2n + 1}_{\mathbb{Z}} is the composition of the mod-2 Steenrod square Sq 2nSq^{2n} with the Bockstein homomorphism β\beta associated with the sequence 2mod2/2\mathbb{Z} \overset{\cdot 2}{\to} \mathbb{Z} \overset{mod\, 2}{\longrightarrow} \mathbb{Z}/2\mathbb{Z}:

Sq 2n+1βSq 2n. Sq^{2n + 1}_{\mathbb{Z}} \;\coloneqq\; \beta \circ Sq^{2n} \,.

Properties

Proposition

The odd-degree integral Steenrod squares from def. are indeed integral lifts of the mod-2 Steenrod squares in that

(mod2)Sq 2n+1=Sq 2n+1, (mod\, 2) \circ Sq^{2n + 1}_{\mathbb{Z}} \;=\; Sq^{2n+1} \,,
Proof

This follows from the relation of the Bockstein homomorphism to the first Steenrod square

(mod,2)β=Sq 1 (mod, 2) \circ \beta = Sq^1

(this example) together with the first Adem relation

Sq 1Sq 2n=Sq 2n+1 Sq^1 \circ Sq^{2n} = Sq^{2n+1}

(this example):

Sq 2n+1 : B (/2) Sk 2n B +2n(/2) β B +2n+1 id id B k+2n+1(mod2) Sq 2n+1 : B (/2) Sk 2n B +2n(/2) Sq 1 B +2n+1(/2) \array{ Sq^{2n+1}_{\mathbb{Z}} &\colon& B^{\bullet} (\mathbb{Z}/2\mathbb{Z}) &\overset{Sk^{2n}}{\longrightarrow}& B^{\bullet + 2n} (\mathbb{Z}/2\mathbb{Z}) &\overset{ \beta }{\longrightarrow}& B^{\bullet + 2n + 1} \mathbb{Z} \\ && \downarrow^{ id } && \downarrow^{ id } && \downarrow^{\mathrlap{B^{k + 2 n + 1}(mod\, 2)}} \\ Sq^{2n+1} &\colon& B^{\bullet} (\mathbb{Z}/2\mathbb{Z}) &\underset{Sk^{2n}}{\longrightarrow}& B^{\bullet + 2n} (\mathbb{Z}/2\mathbb{Z}) &\underset{ Sq^1 }{\longrightarrow}& B^{\bullet + 2n + 1} (\mathbb{Z}/2\mathbb{Z}) }
Proposition

(integral Steenrod square in terms of Bockstein homomorphism for exponential sequence)

The integral Steenrod squares (def. ) may equivalently be written in terms of the Bockstein homomorphism δ\delta of the exponential sequence 2πmod2πU(1)\mathbb{Z} \overset{\cdot 2\pi}{\longrightarrow} \mathbb{R} \overset{mod\, 2 \pi}{\longrightarrow} U(1) as

(1)Sq 2n+1:B (/2)Sq 2nB +2n(/2)ιB +2nU(1)δB +2n+1. Sq^{2n+1}_{\mathbb{Z}} \;\colon\; B^{\bullet} (\mathbb{Z}/2\mathbb{Z}) \overset{ Sq^{2 n} }{\longrightarrow} B^{\bullet + 2n } (\mathbb{Z}/2\mathbb{Z}) \overset{ \iota }{\longrightarrow} B^{\bullet + 2n} U(1) \overset{\delta}{\longrightarrow} B^{\bullet + 2n + 1} \mathbb{Z} \,.
Proof

Since β=δι\beta = \delta \circ \iota, by this example.

Examples

Example

(integral Steenrod square refined to ordinary differential cohomology)

Let G^ 2n+2:XB 2n+1U(1) conn\hat G_{2n+2} \colon X \to \mathbf{B}^{2n+1} U(1)_{conn} be a cocycle in ordinary differential cohomology of degree 2n+22n + 2.

By inserting the bottom triangle of the ordinary differential cohomology hexagon (this diagram) into the factorization in (1) we obtain a canonical refinement of the integral Steenrod square Sq 2n+1[G 2n+2]Sq^{2n+1}_{\mathbb{Z}} [G_{2n + 2}] to a cocycle Sq^ 2n+1G^ 2n+2\widehat{Sq}^{2n+1}_{\mathbb{Z}} \hat G_{2n+2} in ordinary differential cohomology, which happens to be flat

B 4n+2U(1) B 4n+2U(1) conn ιSq 2n δ χ X G 2n+2 B 2n+2 Sq 2n+1 B 4n+3. \array{ && && \mathbf{B}^{4n+2} \flat U(1) &\longrightarrow& \mathbf{B}^{4n+2}U(1)_{conn} \\ && & {}^{\mathllap{ \iota \circ Sq^{2n} }}\nearrow & & {}_{\mathllap{\delta}}\searrow & \downarrow^{\chi} \\ X &\underset{G_{2n + 2}}{\longrightarrow}& B^{2n+2} \mathbb{Z} && \underset{ Sq^{2n+1}_{\mathbb{Z}} }{\longrightarrow} && B^{4n+3} \mathbb{Z} } \,.

If one moreover asks that the integral Steenrod square vanishes

[Sq 2n+1G 2n+2]=0H 4n+3(X,) [ Sq^{2n+1}_{\mathbb{Z}} G_{2n+2}] \;=\; 0 \;\in\; H^{4n+3}(X,\mathbb{Z})

(as in Diaconescu-Moore-Witten 00, around (6.9) for n=1n = 1) then the curvature exact sequence and characteristic class exact sequence in ordinary differential cohomology (this prop.) imply that the class of Sq^ 2n+1G^ 2n+2\widehat{Sq}^{2n+1}_{\mathbb{Z}} \hat G_{2n + 2} is identified with a class in de Rham cohomology in degree 4n+34n+3:

H diff 2n+2(X)| Sq 2n+1=0Sq^ 2n+1H dR 4n+3(X). H^{2n+2}_{diff}(X)|_{Sq^{2n+1}_{\mathbb{Z}} = 0} \overset{\widehat{Sq}_{\mathbb{Z}}^{2n+1}}{\longrightarrow} H^{4n+3}_{dR}(X) \,.

References

The third integral Steenrod square Sq 3Sq^3_{\mathbb{Z}} plays a central role in the discussion of the supergravity C-field in

Last revised on November 19, 2020 at 22:39:15. See the history of this page for a list of all contributions to it.