identity morphism

The **identity morphism**, or simply **identity**, of an object $x$ in some category $C$ is the morphism $1_x: x \to x$, or $\id_x: x \to x$, which acts as a two-sided identity for composition.

Given a small category $C$ with set of objects $C_0$ and set of morphisms $C_1$, the **identity assigning function** of $C$ is the function $i: C_0 \to C_1$ that maps each object in $C_0$ to its identity morphism in $C_1$.

For the generalisation to an internal category $C$, see identity-assigning morphism.

In Set, the identity morphisms are the identity functions.

Revised on July 10, 2009 16:56:35
by Eric Forgy
(65.163.59.49)