formal geometry



Several notions of formal geometry

Formal geometry is a highly overloaded term in mathematics, used in number of conceptually similar ways, usually meaning that we work in setup in which some crucial details of geometry or analysis are not present or satisfied, e.g.

  • we work with functions on “manifolds” but the functions do not necessarily converge, the geometry is rather based on topological algebras of formal power series; this is the formal geometry of Grothendieck school and the main notion is that of a formal scheme (or more general ind-schemes). There are also noncommutative versions like Kapranov's noncommutative geometry.

  • Gelfand’s formal geometry: study infinitedimensional manifolds of jet spaces and related objects coming from usual differential geometry, geometry of formal differential operators, study of related objects from homological algebra, including Gelfand’s formal manifold? (homological vector field)

  • we talk about neighborhoods,or localizations, morphisms of spaces, but not about spectra and points (a part of noncommutative geometry is done in such style) – this is sometimes called “pseudogeometry”

  • in algebraic geometry: formal spectrum of an adic noetherian ring

Gelfand’s formal geometry

See MathOverflow: formal-geometry, how-do-i-describe-the-gl-n-torsor-attached-to-a-smooth-morphism-of-relative-dimen,

  • Israel Gelfand, David Kazhdan, Certain questions of differential geometry and the computation of the cohomologies of the Lie algebras of vector fields, Soviet Math. Doklady 12, 1367-1370 (1971)

For characteristic p>0p\gt 0 case see

  • Fedosov quantization in positive characteristics arXiv

In a similar formal context Gelfand and collaborators introduced (𝔄,𝒟)(\mathfrak{A},\mathcal{D})-systems

  • I. M. Gelʹfand, Yu. L. Daletskiĭ, Lie superalgebras and Hamiltonian operators, Rep. No. 16 Sem. Supermanifolds, Dept. Math. Univ. Stockholm, 1987, 26 p.
  • I. M. Gelʹfand, Yu. L. Daletskiĭ, B. L. Tsygan, On a variant of noncommutative differential geometry, Dokl. Akad. Nauk SSSR 308 (1989), no. 6, 1293–1297; translation in Soviet Math. Dokl. 40 (1990), no. 2, 422–426 MR91j:58015

The (𝔄,𝒟)(\mathfrak{A},\mathcal{D})-systems were partly motivated by the calculus of variations, formalizing further the setting of works of Gelfand and Dorfman.

  • И. М. Гельфанд, И. Я. Дорфман, Гамильтоновы операторы и бесконечномерные алгебры Ли, Функц. анализ и его прил., 15:3 (1981), 23–40, pdf; Гамильтоновы операторы и классическое уравнение Янга–Бакстера, Функц. анализ и его прил. 16:4 (1982), 1–9 pdf; Скобка Схоутена и гамильтоновы операторы, Функц. анализ и его прил., 14:3 (1980), 71–74 pdf
  • Ю. Л. Далецкий, Гамильтоновы операторы в градуированном формальном вариационном исчислении, pdf, transl. Yu. L. Daletskii, Hamiltonian operators in graded formal calculus of variations, Funct. Anal. Appl. 20:2, 1986, 136-138

Formal noncommutative symplectic geometry of Kontsevich

  • Maxim Kontsevich, Formal (non)-commutative symplectic geometry, The Gelfand Mathematical. Seminars, 1990-1992, Ed. L.Corwin, I.Gelfand, J.Lepowsky, Birkhauser 1993, 173-187, pdf

Examples of sequences of infinitesimal and local structures

first order infinitesimal\subsetformal = arbitrary order infinitesimal\subsetlocal = stalkwise\subsetfinite
\leftarrow differentiationintegration \to
derivativeTaylor seriesgermsmooth function
tangent vectorjetgerm of curvecurve
square-0 ring extensionnilpotent ring extensionring extension
Lie algebraformal grouplocal Lie groupLie group
Poisson manifoldformal deformation quantizationlocal strict deformation quantizationstrict deformation quantization
Revised on April 7, 2014 08:33:26 by Urs Schreiber (