nLab
Kervaire invariant

Contents

Idea

For XX a framed smooth manifold of dimension 4k+24k +2, kk \in \mathbb{N}, the Kervaire invariant or Arf-Kervaire invariant

Ker(X) 2 Ker(X) \in \mathbb{Z}_2

with values in the group of order 2 is the Arf invariant? of the skew-quadratic form on the middle dimensional homology group.

Properties

Manifolds with non-trivial Kervaire invariant, hence with Kervaire invariant 1, exist in dimension

  • d=2=40+2d = 2 = 4\cdot 0 + 2

  • d=6=41+2d = 6 = 4\cdot 1 + 2

  • d=14=43+2d = 14 = 4 \cdot 3 + 2

  • d=30=47+2d = 30 = 4 \cdot 7 + 2

  • d=62=415+2d = 62 = 4 \cdot 15 + 2

and in no other dimension, except possibly in d=126d = 126 (a case that is still open).

manifold dimensioninvariantquadratic formquadratic refinement
4k4ksignature genusintersection pairingintegral Wu structure
4k+24k+2Kervaire invariantframing

References

  • W. Browder, The Kervaire invariant of framed manifolds and its generalization, Annals of Mathematics 90 (1969), 157–186.

  • John Jones, Elmer Rees, A note on the Kervaire invariant (pdf)

  • Wikipedia, Kervaire invariant

On the solution of the Arf-Kervaire invariant problem:

On the equivariant homotopy theory involved:

More resources are collected at

Revised on April 15, 2014 08:08:42 by Urs Schreiber (88.128.80.29)