Homotopy Type Theory limit of a net > history (Rev #5, changes)

Showing changes from revision #4 to #5: Added | Removed | Changed

Contents

Definition

In premetric spaces

Let TT be a directed type, and let SS be a TT-premetric space. Given a directed type II, a limit of a net x:ISx: I \to S is a term l:Sl:S with

λ: ϵ:T N:I i:I(iN)(x i ϵl)\lambda: \prod_{\epsilon:T} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (x_i \sim_{\epsilon} l) \Vert

Cauchy approximations

Let AA be a abelian dense group with a point1:A1:AArchimedean ordered abelian group , with a pointstrict order1:A1:A and a termζ:0<1 \zeta: 0 \lt 1 , . a Let termζA + : a:A(0<1a) \zeta: A_{+} 0 \coloneqq \sum_{a:A} (0 \lt 1 a) and be a the family of dependent termspositive cone? of AA.

a:A,b:Aα(a,b):(0<a)×(0<b)(0<a+b)a:A, b:A \vdash \alpha(a, b):(0 \lt a) \times (0 \lt b) \to (0 \lt a + b)

A limit of a A +A_{+}-Cauchy approximation x:A +Sx: A_{+} \to S is a term l:Sl:S with

Let A + a:A(0<a)A_{+} \coloneqq \sum_{a:A} (0 \lt a) be the positive cone? of AA.

x:A +Sc(x): δ:A + η:A +x δ δηlx:A_{+} \to S \vdash c(x):\prod_{\delta:A_{+}} \prod_{\eta:A_{+}} x_\delta \sim_{\delta \oplus \eta} l

A limit of a A +A_{+}-Cauchy approximation x:A +Sx: A_{+} \to S is a term l:Sl:S with

x:A +Sc(x): δ:A + η:A +x δ δηlx:A_{+} \to S \vdash c(x):\prod_{\delta:A_{+}} \prod_{\eta:A_{+}} x_\delta \sim_{\delta \oplus \eta} l

In convergence spaces

Sequences

A limit of a sequence is a limit of a net that happens to be a sequence.

See also

Revision on March 12, 2022 at 22:10:53 by Anonymous?. See the history of this page for a list of all contributions to it.