Homotopy Type Theory limit of a net > history (Rev #4, changes)

Showing changes from revision #3 to #4: Added | Removed | Changed

Contents

Definition

In premetric spaces

Let TT be a directed type, and let SS be a TT-premetric space. Given a directed type II, a limit of a net x:ISx: I \to S is a term l:Sl:S with

λ: ϵ:T N:I i:I(iN)(x i ϵl)\lambda: \prod_{\epsilon:T} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (x_i \sim_{\epsilon} l) \Vert

Cauchy approximations

Let T A T A be a directed abelian type group and with a pointcodirected type1:A1:A , where a the directed type operation\oplusstrict order is associative. A limit of aT< T \lt - , a termCauchy approximationζ:0<1\zeta: 0 \lt 1 and a family of dependent termsx:TSx: T \to S is a term l:Sl:S with

x a: T A , S b:A c α( x a,b): δ:T( η:T0x δ< δηal)×(0<b)(0<a+b) x:T a:A, \to b:A S \vdash c(x):\prod_{\delta:T} \alpha(a, \prod_{\eta:T} b):(0 x_\delta \lt \sim_{\delta a) \oplus \times \eta} (0 l \lt b) \to (0 \lt a + b)

Let A + a:A(0<a)A_{+} \coloneqq \sum_{a:A} (0 \lt a) be the positive cone? of AA.

A limit of a A +A_{+}-Cauchy approximation x:A +Sx: A_{+} \to S is a term l:Sl:S with

x:A +Sc(x): δ:A + η:A +x δ δηlx:A_{+} \to S \vdash c(x):\prod_{\delta:A_{+}} \prod_{\eta:A_{+}} x_\delta \sim_{\delta \oplus \eta} l

In convergence spaces

Sequences

A limit of a sequence is a limit of a net that happens to be a sequence.

See also

Revision on March 12, 2022 at 21:33:15 by Anonymous?. See the history of this page for a list of all contributions to it.