nLab
negative thinking

**higher category theory** * category theory * homotopy theory ## Basic concepts * k-morphism, coherence * looping and delooping * looping and suspension ## Basic theorems * homotopy hypothesis-theorem * delooping hypothesis-theorem * periodic table * stabilization hypothesis-theorem * exactness hypothesis * holographic principle ## Applications * applications of (higher) category theory * higher category theory and physics ## Models * (n,r)-category * Theta-space * ∞-category/ω-category * (∞,n)-category * n-fold complete Segal space * (∞,2)-category * (∞,1)-category * quasi-category * algebraic quasi-category * simplicially enriched category * complete Segal space * model category * (∞,0)-category/∞-groupoid * Kan complex * algebraic Kan complex * simplicial T-complex * n-category = (n,n)-category * 2-category, (2,1)-category * 1-category * 0-category * (−1)-category * (−2)-category * n-poset = (n-1,n)-category * poset = (0,1)-category * 2-poset = (1,2)-category * n-groupoid = (n,0)-category * 2-groupoid, 3-groupoid * categorification/decategorification * geometric definition of higher category * Kan complex * quasi-category * simplicial model for weak ω-categories * complicial set * weak complicial set * algebraic definition of higher category * bicategory * bigroupoid * tricategory * tetracategory * strict ω-category * Batanin ω-category * Trimble ω-category * Grothendieck-Maltsiniotis ∞-categories * stable homotopy theory * symmetric monoidal category * symmetric monoidal (∞,1)-category * stable (∞,1)-category * dg-category * A-∞ category * triangulated category ## Morphisms * k-morphism * 2-morphism * transfor * natural transformation * modification ## Functors * functor * 2-functor * pseudofunctor * lax functor * (∞,1)-functor ## Universal constructions * 2-limit * (∞,1)-adjunction * (∞,1)-Kan extension * (∞,1)-limit * (∞,1)-Grothendieck construction ## Extra properties and structure * cosmic cube * k-tuply monoidal n-category * strict ∞-category, strict ∞-groupoid * stable (∞,1)-category * (∞,1)-topos ## 1-categorical presentations * homotopical category * model category theory * enriched category theory

Edit this sidebar

Negative thinking is a way of thinking about categorification by considering what the original concept is a categorification of. That is, to better understand how foos are categorified to become 22-foos, 33-foos, and so on, you think about how foos are themselves a categorification of 00-foos, (1)(-1)-foos, and so on. Generally, the concept of nn-foo stops making sense for small values of nn after a few steps, but it does make sense surprisingly often for at least some non-positive values. Experienced negative thinkers can compete to see ‘how low can you go’.

More generally, negative thinking can apply whenever you have a sequence of mathematical objects and ask yourself what came before the beginning? Examples outside category theory include the (1)(-1)-sphere and the (1)(-1)-simplex (which are both empty), although maybe it means something that these are both from homotopy theory. Tim Gowers has called this ‘generalizing backwards’.

For low values of nn-category, see Section 2 of Lectures on n-Categories and Cohomology. Related issues appear at category theory vs order theory. See also nearly any page here with ‘0’ or ‘(-1)’ in the title, such as

Revised on March 19, 2011 04:27:54 by Toby Bartels (98.23.132.28)