# nLab pin group

Contents

## Spin geometry

spin geometry

Dynkin labelsp. orth. groupspin grouppin groupsemi-spin group
SO(2)Spin(2)Pin(2)
B1SO(3)Spin(3)Pin(3)
D2SO(4)Spin(4)Pin(4)
B2SO(5)Spin(5)Pin(5)
D3SO(6)Spin(6)
B3SO(7)Spin(7)
D4SO(8)Spin(8)SO(8)
B4SO(9)Spin(9)
D5SO(10)Spin(10)
B5SO(11)Spin(11)
D6SO(12)Spin(12)
$\vdots$$\vdots$
D8SO(16)Spin(16)SemiSpin(16)
$\vdots$$\vdots$
D16SO(32)Spin(32)SemiSpin(32)

string geometry

# Contents

## Idea

A $Pin$-group is a simply connected cover of an orthogonal group. Its restriction along the inclusion of the special orthogonal group is a Spin group. Hence a $Pin$-group is “like the corresponding Spin group, but including reflections”.

## Definition

###### Definition

A quadratic vector space $(V, \langle -,-\rangle)$ is a vector space $V$ over finite dimension over a field $k$ of characteristic 0, and equipped with a symmetric bilinear form $\langle -,-\rangle \colon V \otimes V \to k$.

Conventions as in (Varadarajan 04, section 5.3).

We write $q\colon v \mapsto \langle v ,v \rangle$ for the corresponding quadratic form.

###### Definition

The Clifford algebra $CL(V,q)$ of a quadratic vector space, def. , is the associative algebra over $k$ which is the quotient

$Cl(V,q) \coloneqq T(V)/I(V,q)$

of the tensor algebra of $V$ by the ideal generated by the elements $v \otimes v - q(v)$.

Since the tensor algebra $T(V)$ is naturally $\mathbb{Z}$-graded, the Clifford algebra $Cl(V,q)$ is naturally $\mathbb{Z}/2\mathbb{Z}$-graded.

Let $(\mathbb{R}^n, q = {\vert -\vert})$ be the $n$-dimensional Cartesian space with its canonical scalar product. Write $Cl^\mathbb{C}(\mathbb{R}^n)$ for the complexification of its Clifford algebra.

###### Proposition

There exists a unique complex representation

$Cl^{\mathbb{C}}(\mathbb{R}^n) \longrightarrow End(\Delta_n)$

of the algebra $Cl^\mathbb{C}(\mathbb{R}^n)$ of smallest dimension

$dim_{\mathbb{C}}(\Delta_n) = 2^{[n/2]} \,.$
###### Definition

The Pin group $Pin(V;q)$ of a quadratic vector space, def. , is the subgroup of the group of units in the Clifford algebra $Cl(V,q)$

$Pin(V,q) \hookrightarrow GL_1(Cl(V,q))$

on those elements which are multiples $v_1 \cdots v_{n}$ of elements $v_i \in V$ with $q(v_i) = 1$.

The Spin group $Spin(V,q)$ is the further subgroup of $Pin(V;q)$ on those elements which are even number multiples $v_1 \cdots v_{2k}$ of elements $v_i \in V$ with $q(v_i) = 1$.

Specifically, “the” Spin group is

$Spin(n) \coloneqq Spin(\mathbb{R}^n) \,,$

where we understand the standard quadratic form on $\mathbb{R}^n$ for either global sign

$\array{ \mathbb{R}^n &\overset{q_{\pm}}{\longrightarrow}& \mathbb{R} \\ \vec x &\mapsto& \pm \underset{i}{\sum} (x^i)^2 }$

The corresponding two $Pin$-groups are denoted

$Pin_\pm(n) \;\coloneqq\; Pin\big( \mathbb{R}^n, q_\pm\big)$

## Examples

groupsymboluniversal coversymbolhigher coversymbol
orthogonal group$\mathrm{O}(n)$Pin group$Pin(n)$Tring group$Tring(n)$
special orthogonal group$SO(n)$Spin group$Spin(n)$String group$String(n)$
Lorentz group$\mathrm{O}(n,1)$$\,$$Spin(n,1)$$\,$$\,$
anti de Sitter group$\mathrm{O}(n,2)$$\,$$Spin(n,2)$$\,$$\,$
conformal group$\mathrm{O}(n+1,t+1)$$\,$
Narain group$O(n,n)$
Poincaré group$ISO(n,1)$Poincaré spin group$\widehat {ISO}(n,1)$$\,$$\,$
super Poincaré group$sISO(n,1)$$\,$$\,$$\,$$\,$
superconformal group
Dynkin labelsp. orth. groupspin grouppin groupsemi-spin group
SO(2)Spin(2)Pin(2)
B1SO(3)Spin(3)Pin(3)
D2SO(4)Spin(4)Pin(4)
B2SO(5)Spin(5)Pin(5)
D3SO(6)Spin(6)
B3SO(7)Spin(7)
D4SO(8)Spin(8)SO(8)
B4SO(9)Spin(9)
D5SO(10)Spin(10)
B5SO(11)Spin(11)
D6SO(12)Spin(12)
$\vdots$$\vdots$
D8SO(16)Spin(16)SemiSpin(16)
$\vdots$$\vdots$
D16SO(32)Spin(32)SemiSpin(32)