# nLab associative unital algebra

Contents

### Context

#### Higher algebra

higher algebra

universal algebra

# Contents

## Definition

### Over ordinary rings

For $R$ a commutative ring, an associative unital $R$-algebra is equivalently

• a monoid internal to $R$Mod equipped with the tensor product of modules $\otimes$;

• a pointed one-object category enriched over $(R Mod, \otimes)$;

• a pointed $R$-algebroid with one object;

• an $R$-module $V$ equipped with linear maps $p : V \otimes V \to V$ and $i : R \to V$ satisfying the associative and unit laws;

• a ring $A$ under $R$ such that the corresponding map $R \to A$ lands in the center of $A$.

If there is no danger for confusion, one often says simply ‘associative algebra’, or even only ‘algebra’.

More generally, a (merely) associative algebra need not have $i: R \to V$; that is, it is a semigroup instead of a monoid.

Less generally, a commutative algebra (where associative and unital are usually assumed) is an commutative monoid in a symmetric monoidal category in $Vect$.

For a given ring the algebras form a category, Alg, and the commutative algebras a subcategory, CommAlg.

### Over monoids in a monoidal category

###### Definition

Given a monoidal category $(\mathcal{C}, \otimes, 1)$, then a monoid internal to $(\mathcal{C}, \otimes, 1)$ is

1. an object $A \in \mathcal{C}$;

2. a morphism $e \;\colon\; 1 \longrightarrow A$ (called the unit)

3. a morphism $\mu \;\colon\; A \otimes A \longrightarrow A$ (called the product);

such that

1. (associativity) the following diagram commutes

$\array{ (A\otimes A) \otimes A &\underoverset{\simeq}{a_{A,A,A}}{\longrightarrow}& A \otimes (A \otimes A) &\overset{id \otimes \mu}{\longrightarrow}& A \otimes A \\ {}^{\mathllap{\mu \otimes id}}\downarrow && && \downarrow^{\mathrlap{\mu}} \\ A \otimes A &\longrightarrow& &\overset{\mu}{\longrightarrow}& A } \,,$

where $a$ is the associator isomorphism of $\mathcal{C}$;

2. (unitality) the following diagram commutes:

$\array{ 1 \otimes A &\overset{e \otimes id}{\longrightarrow}& A \otimes A &\overset{id \otimes e}{\longleftarrow}& A \otimes 1 \\ & {}_{\mathllap{\ell}}\searrow & \downarrow^{\mathrlap{\mu}} & & \swarrow_{\mathrlap{r}} \\ && A } \,,$

where $\ell$ and $r$ are the left and right unitor isomorphisms of $\mathcal{C}$.

Moreover, if $(\mathcal{C}, \otimes , 1)$ has the structure of a symmetric monoidal category $(\mathcal{C}, \otimes, 1, B)$ with symmetric braiding $\tau$, then a monoid $(A,\mu, e)$ as above is called a commutative monoid in $(\mathcal{C}, \otimes, 1, B)$ if in addition

• (commutativity) the following diagram commutes

$\array{ A \otimes A && \underoverset{\simeq}{\tau_{A,A}}{\longrightarrow} && A \otimes A \\ & {}_{\mathllap{\mu}}\searrow && \swarrow_{\mathrlap{\mu}} \\ && A } \,.$

A homomorphism of monoids $(A_1, \mu_1, e_1)\longrightarrow (A_2, \mu_2, f_2)$ is a morphism

$f \;\colon\; A_1 \longrightarrow A_2$

in $\mathcal{C}$, such that the following two diagrams commute

$\array{ A_1 \otimes A_1 &\overset{f \otimes f}{\longrightarrow}& A_2 \otimes A_2 \\ {}^{\mathllap{\mu_1}}\downarrow && \downarrow^{\mathrlap{\mu_2}} \\ A_1 &\underset{f}{\longrightarrow}& A_2 }$

and

$\array{ 1_{\mathcal{c}} &\overset{e_1}{\longrightarrow}& A_1 \\ & {}_{\mathllap{e_2}}\searrow & \downarrow^{\mathrlap{f}} \\ && A_2 } \,.$

Write $Mon(\mathcal{C}, \otimes,1)$ for the category of monoids in $\mathcal{C}$, and $CMon(\mathcal{C}, \otimes, 1)$ for its subcategory of commutative monoids.

###### Definition

Given a monoidal category $(\mathcal{C}, \otimes, 1)$, and given $(A,\mu,e)$ a monoid in $(\mathcal{C}, \otimes, 1)$ (def. ), then a left module object in $(\mathcal{C}, \otimes, 1)$ over $(A,\mu,e)$ is

1. an object $N \in \mathcal{C}$;

2. a morphism $\rho \;\colon\; A \otimes N \longrightarrow N$ (called the action);

such that

1. (unitality) the following diagram commutes:

$\array{ 1 \otimes N &\overset{e \otimes id}{\longrightarrow}& A \otimes N \\ & {}_{\mathllap{\ell}}\searrow & \downarrow^{\mathrlap{\rho}} \\ && N } \,,$

where $\ell$ is the left unitor isomorphism of $\mathcal{C}$.

2. (action property) the following diagram commutes

$\array{ (A\otimes A) \otimes N &\underoverset{\simeq}{a_{A,A,N}}{\longrightarrow}& A \otimes (A \otimes N) &\overset{A \otimes \rho}{\longrightarrow}& A \otimes N \\ {}^{\mathllap{\mu \otimes N}}\downarrow && && \downarrow^{\mathrlap{\rho}} \\ A \otimes N &\longrightarrow& &\overset{\rho}{\longrightarrow}& N } \,,$

A homomorphism of left $A$-module objects

$(N_1, \rho_1) \longrightarrow (N_2, \rho_2)$

is a morphism

$f\;\colon\; N_1 \longrightarrow N_2$

in $\mathcal{C}$, such that the following diagram commutes:

$\array{ A\otimes N_1 &\overset{A \otimes f}{\longrightarrow}& A\otimes N_2 \\ {}^{\mathllap{\rho_1}}\downarrow && \downarrow^{\mathrlap{\rho_2}} \\ N_1 &\underset{f}{\longrightarrow}& N_2 } \,.$

For the resulting category of modules of left $A$-modules in $\mathcal{C}$ with $A$-module homomorphisms between them, we write

$A Mod(\mathcal{C}) \,.$

This is naturally a (pointed) topologically enriched category itself.

###### Definition

Given a (pointed) topological symmetric monoidal category $(\mathcal{C}, \otimes, 1)$, given $(A,\mu,e)$ a commutative monoid in $(\mathcal{C}, \otimes, 1)$ (def. ), and given $(N_1, \rho_1)$ and $(N_2, \rho_2)$ two left $A$-module objects (def.), then the tensor product of modules $N_1 \otimes_A N_2$ is, if it exists, the coequalizer

$N_1 \otimes A \otimes N_2 \underoverset {\underset{\rho_{1}\circ (\tau_{N_1,A} \otimes N_2)}{\longrightarrow}} {\overset{N_1 \otimes \rho_2}{\longrightarrow}} {\phantom{AAAA}} N_1 \otimes N_1 \overset{coequ}{\longrightarrow} N_1 \otimes_A N_2$
###### Proposition

Given a symmetric monoidal category $(\mathcal{C}, \otimes, 1)$ (def. ), and given $(A,\mu,e)$ a commutative monoid in $(\mathcal{C}, \otimes, 1)$ (def. ). If all coequalizers exist in $\mathcal{C}$, then the tensor product of modules $\otimes_A$ from def. makes the category of modules $A Mod(\mathcal{C})$ into a symmetric monoidal category, $(A Mod, \otimes_A, A)$ with tensor unit the object $A$ itself.

###### Definition

Given a monoidal category of modules $(A Mod , \otimes_A , A)$ as in prop. , then a monoid $(E, \mu, e)$ in $(A Mod , \otimes_A , A)$ (def. ) is called an $A$-algebra.

###### Proposition

Given a monoidal category of modules $(A Mod , \otimes_A , A)$ in a monoidal category $(\mathcal{C},\otimes, 1)$ as in prop. , and an $A$-algebra $(E,\mu,e)$ (def. ), then there is an equivalence of categories

$A Alg_{comm}(\mathcal{C}) \coloneqq CMon(A Mod) \simeq CMon(\mathcal{C})^{A/}$

between the category of commutative monoids in $A Mod$ and the coslice category of commutative monoids in $\mathcal{C}$ under $A$, hence between commutative $A$-algebras in $\mathcal{C}$ and commutative monoids $E$ in $\mathcal{C}$ that are equipped with a homomorphism of monoids $A \longrightarrow E$.

(e.g. EKMM 97, VII lemma 1.3)

###### Proof

In one direction, consider a $A$-algebra $E$ with unit $e_E \;\colon\; A \longrightarrow E$ and product $\mu_{E/A} \colon E \otimes_A E \longrightarrow E$. There is the underlying product $\mu_E$

$\array{ E \otimes A \otimes E & \underoverset {\underset{}{\longrightarrow}} {\overset{}{\longrightarrow}} {\phantom{AAA}} & E \otimes E &\overset{coeq}{\longrightarrow}& E \otimes_A E \\ && & {}_{\mathllap{\mu_E}}\searrow & \downarrow^{\mathrlap{\mu_{E/A}}} \\ && && E } \,.$

By considering a diagram of such coequalizer diagrams with middle vertical morphism $e_E\circ e_A$, one find that this is a unit for $\mu_E$ and that $(E, \mu_E, e_E \circ e_A)$ is a commutative monoid in $(\mathcal{C}, \otimes, 1)$.

Then consider the two conditions on the unit $e_E \colon A \longrightarrow E$. First of all this is an $A$-module homomorphism, which means that

$(\star) \;\;\;\;\; \;\;\;\;\; \array{ A \otimes A &\overset{id \otimes e_E}{\longrightarrow}& A \otimes E \\ {}^{\mathllap{\mu_A}}\downarrow && \downarrow^{\mathrlap{\rho}} \\ A &\underset{e_E}{\longrightarrow}& E }$

commutes. Moreover it satisfies the unit property

$\array{ A \otimes_A E &\overset{e_A \otimes id}{\longrightarrow}& E \otimes_A E \\ & {}_{\mathllap{\simeq}}\searrow & \downarrow^{\mathrlap{\mu_{E/A}}} \\ && E } \,.$

By forgetting the tensor product over $A$, the latter gives

$\array{ A \otimes E &\overset{e \otimes id}{\longrightarrow}& E \otimes E \\ \downarrow && \downarrow^{\mathrlap{}} \\ A \otimes_A E &\overset{e_E \otimes id}{\longrightarrow}& E \otimes_A E \\ {}^{\mathllap{\simeq}}\downarrow && \downarrow^{\mathrlap{\mu_{E/A}}} \\ E &=& E } \;\;\;\;\;\;\;\; \simeq \;\;\;\;\;\;\;\; \array{ A \otimes E &\overset{e_E \otimes id}{\longrightarrow}& E \otimes E \\ {}^{\mathllap{\rho}}\downarrow && \downarrow^{\mathrlap{\mu_{E}}} \\ E &\underset{id}{\longrightarrow}& E } \,,$

where the top vertical morphisms on the left the canonical coequalizers, which identifies the vertical composites on the right as shown. Hence this may be pasted to the square $(\star)$ above, to yield a commuting square

$\array{ A \otimes A &\overset{id\otimes e_E}{\longrightarrow}& A \otimes E &\overset{e_E \otimes id}{\longrightarrow}& E \otimes E \\ {}^{\mathllap{\mu_A}}\downarrow && {}^{\mathllap{\rho}}\downarrow && \downarrow^{\mathrlap{\mu_{E}}} \\ A &\underset{e_E}{\longrightarrow}& E &\underset{id}{\longrightarrow}& E } \;\;\;\;\;\;\;\;\;\; = \;\;\;\;\;\;\;\;\;\; \array{ A \otimes A &\overset{e_E \otimes e_E}{\longrightarrow}& E \otimes E \\ {}^{\mathllap{\mu_A}}\downarrow && \downarrow^{\mathrlap{\mu_E}} \\ A &\underset{e_E}{\longrightarrow}& E } \,.$

This shows that the unit $e_A$ is a homomorphism of monoids $(A,\mu_A, e_A) \longrightarrow (E, \mu_E, e_E\circ e_A)$.

Now for the converse direction, assume that $(A,\mu_A, e_A)$ and $(E, \mu_E, e'_E)$ are two commutative monoids in $(\mathcal{C}, \otimes, 1)$ with $e_E \;\colon\; A \to E$ a monoid homomorphism. Then $E$ inherits a left $A$-module structure by

$\rho \;\colon\; A \otimes E \overset{e_A \otimes id}{\longrightarrow} E \otimes E \overset{\mu_E}{\longrightarrow} E \,.$

By commutativity and associativity it follows that $\mu_E$ coequalizes the two induced morphisms $E \otimes A \otimes E \underoverset{\longrightarrow}{\longrightarrow}{\phantom{AA}} E \otimes E$. Hence the universal property of the coequalizer gives a factorization through some $\mu_{E/A}\colon E \otimes_A E \longrightarrow E$. This shows that $(E, \mu_{E/A}, e_E)$ is a commutative $A$-algebra.

Finally one checks that these two constructions are inverses to each other, up to isomorphism.

## Properties

### Tannaka duality

Tannaka duality for categories of modules over monoids/associative algebras

monoid/associative algebracategory of modules
$A$$Mod_A$
$R$-algebra$Mod_R$-2-module
sesquialgebra2-ring = monoidal presentable category with colimit-preserving tensor product
bialgebrastrict 2-ring: monoidal category with fiber functor
Hopf algebrarigid monoidal category with fiber functor
hopfish algebra (correct version)rigid monoidal category (without fiber functor)
weak Hopf algebrafusion category with generalized fiber functor
quasitriangular bialgebrabraided monoidal category with fiber functor
triangular bialgebrasymmetric monoidal category with fiber functor
quasitriangular Hopf algebra (quantum group)rigid braided monoidal category with fiber functor
triangular Hopf algebrarigid symmetric monoidal category with fiber functor
supercommutative Hopf algebra (supergroup)rigid symmetric monoidal category with fiber functor and Schur smallness
form Drinfeld doubleform Drinfeld center
trialgebraHopf monoidal category

2-Tannaka duality for module categories over monoidal categories

monoidal category2-category of module categories
$A$$Mod_A$
$R$-2-algebra$Mod_R$-3-module
Hopf monoidal categorymonoidal 2-category (with some duality and strictness structure)

3-Tannaka duality for module 2-categories over monoidal 2-categories

monoidal 2-category3-category of module 2-categories
$A$$Mod_A$
$R$-3-algebra$Mod_R$-4-module