Proving the biequivalence between Feynman categories and colored operads:
Michael Batanin, Joachim Kock, Mark Weber, Regular patterns, substitudes, Feynman categories and operads, Theory Appl. Categ. 33 (2018), 148–192 (arXiv:1510.08934)
Imma Gálvez-Carrillo, Joachim Kock, and Andrew Tonks. Homotopy linear algebra. Proc. Roy. Soc. Edinburgh Sect. A, 148(2):293–325, 2018 (arXiv:1602.05082).
Imma Gálvez-Carrillo, Joachim Kock, and Andrew Tonks. Groupoids and Faà di Bruno formulae for Green functions in bialgebras of trees. Adv. Math., 254:79–117, 2014.
David Gepner, Rune Haugseng, Joachim Kock, ∞-Operads as Analytic Monads, (arXiv:1712.06469)
Last revised on September 11, 2021 at 06:33:57. See the history of this page for a list of all contributions to it.