nLab
Hopf algebroid

Contents

Contents

Idea

A Hopf algebroid is an associative bialgebroid with an antipode.

A Hopf algebroid is a (possibly noncommutative) generalization of a structure which is dual to a groupoid (equipped with atlas) in the sense of space-algebra duality. This is the concept that generalizes Hopf algebras with their relation to groups from groups to groupoids.

Specifically commutative Hopf algebroids are the internal groupoids in the opposite category of CRing. These arise notably in stable homotopy theory as generalized dual Steenrod algebras for generalized cohomology.

More generally there are Hopf algebroids over a commutative base, examples of which are convolution algebras of Lie groupoids.

Definition (under construction)

In the general case we should distinguish left and right bialgebroids, see bialgebroid.

In one of the versions, a general Hopf algebroid is defined as a pair of a left algebroid and right algebroid together with a linear map from left to right bialgebroid taking the role of an antipode.

Commutative Hopf algebroids

Given an internal groupoid in the category Aff k=Alg k opAff_k = Alg_k^{op} of affine algebraic kk-schemes, where kk is a field, the kk-algebras of global sections over the scheme of objects and the scheme of morphisms have an additional structure of a commutative Hopf algebroid. In fact this is an antiequivalence of categories.

These commutative Hopf algebroids play a key role in stable homotopy theory/brave new algebra, as they arise as the dual Steenrod algebras for certain classes of generalized cohomology theories EE and as such govern the EE-Adams spectral sequence.

Noncommutative Hopf algebroids

There are several generalizations to the noncommutative case. A difficult part is to work over the noncommutative base (i.e., the object of objects is noncommutative). The definition of a bialgebroid is not that difficult and there is even a very old definition of an equivalent structure due Takeuchi. To add an antipode is nontrivial. A definition of Lu from mid 1990s is rather nonselfdual, unlike the case of Hopf algebras and introduces rather ad hoc certain section map. So a better solution may be even to abandon the idea of an antipode and have some replacement for it. There are two approaches, one due to Day and Street, and another due Gabi Böhm, using pairs of a left and right bialgebroid. Gabi later showed that the two definitions are in fact equivalent.

Noncommutative Hopf algebroid with invertible antipode

A definition of an antipode avoiding a section map of Lu, but requiring that the antipode is invertible. In this definition, given a left AA-bialgebroid (H,α,β,Δ,ϵ)(H,\alpha,\beta,\Delta,\epsilon), an invertible antipode S:HHS:H\to H is an antihomomorphism of algebras with inverse map S 1:HHS^{-1}:H\to H satisfying

Sβ=α S\circ\beta = \alpha

and for every hHh\in H,

(S 1h (2)) (1) A(S 1h (2)) (2)h (1)=S 1h A1 H, (S^{-1} h_{(2)})_{(1)}\otimes_A(S^{-1} h_{(2)})_{(2)}h_{(1)} = S^{-1} h\otimes_A 1_H,
(Sh (1)) (1)h (2) A(Sh (1)) (2)=1 H ASh. (S h_{(1)})_{(1)} h_{(2)}\otimes_A(S h_{(1)})_{(2)} = 1_H\otimes_A S h.

Examples

Minimal Hopf algebroid

Let AA be a unital associative algebra. Then AA opA\otimes A^{op} has a structure of a Hopf algebroid, a minimal Hopf algebroid over AA, with source map α(a)=a1\alpha(a) = a\otimes 1, target map β(b)=1b\beta(b) = 1\otimes b, comultiplication Δ(ab)=(a1) A(1b)\Delta(a\otimes b) = (a\otimes 1)\otimes_A(1\otimes b), counit ϵ(ab)=ab\epsilon(a\otimes b) = a b and antipode τ(ab)=ba\tau(a\otimes b) = b\otimes a.

Lu (1996) considers this example an analogue of a Poisson groupoid? structure on P×P¯P\times\overline{P} where PP is a Poisson manifold, which is itself considered an analogue of a set theoretic course groupoid on X×XX\times X where XX is a set. Thus she calls this example a coarse Hopf algebroid.

Scalar extension Hopf algebroids

Given a Hopf algebra BB and a braided-commutative algebra AA in the category of Yetter-Drinfeld modules over BB, by a result of Brzezinski-Militaru, the smash product algebra BAB\sharp A is the total algebra of a Hopf algebroid over AA. This is a noncommutative generalization (of formal dual of) an action groupoid.

This construction is modelled on an earlier variant, first written out by Lu, where AA is a braided-commutative algebra in the category of modules over D(H)D(H), the Drinfeld double of HH.

References

The commutative version is classical, and there is an extensive literature, see Hopf algebroids over a commutative base.

Over a noncommutative base ring, there is a nonsymmetric version due J-H. Lu and a similar version is later studied by Ping Xu

The modern concept over the noncommutative base has been discovered by several different people in several different formalisms. Some of the differences are merely cosmetic, but there are at least two main concepts, depending on the underlying concept of ‘bialgebroid’.

Day and Street have a concept of Hopf algebroid here:

  • B. Day, R. Street, Monoidal bicategories and Hopf algebroids, Advances in Mathematics 129, 1 (1997) 99–157

In this they start by taking an algebroid to be an “algebra with several objects” in the sense of a kk-linear category AA: that is, a VV-enriched category with V=Vect kV = Vect_k. The 2-category VCatV Cat of kk-linear categories, functors and natural transformations is monoidal (where the tensor product of VV-categories is defined by cartesian product on object sets and tensor product on hom-spaces). So, they define a bialgebroid to be a comonoid in VCatV Cat. Because the tensor product is cartesian product on object sets, the comultiplication in such a bialgebroid is forced to be the diagonal on objects. Thus, their notion of bialgebroid amounts to a kk-linear category AA equipped with linear maps

A(a,b)A(a,b)A(a,b) A(a,b) \to A(a,b) \otimes A(a,b)

satisfying coassociativity, a version of the usual bialgebra axiom, and so on. On page 142 of the above reference they define an antipode on a bialgebroid AA to be a kk-linear functor S:AA opS: A \to A^{op} together with a natural isomorphism

A(b,c)A(a,Sb)A(b,c)A(a,c) A(b,c) \otimes A(a,S b) \cong A(b,c) \otimes A(a,c)

A Hopf algebroid is then roughly a bialgebroid with an antipode. With this definition, a Hopf algebra gives a one-object Hopf algebroid.

A different and more widely used concept was developed independently in these two papers, which appeared on the arXiv within a couple of days of each other:

  • G. Böhm, An alternative notion of Hopf algebroid; in “Hopf algebras in noncommutative geometry and physics”, 31–53, Lecture Notes in Pure and Appl. Math. 239, Dekker, New York, 2005; math.QA/0301169

  • R. Street and B. Day, Quantum categories, star autonomy, and quantum groupoids, in “Galois Theory, Hopf Algebras, and Semiabelian Categories”, Fields Institute Communications 43 (American Math. Soc. 2004) 187-226; arXiv:0301209

and also described in:

  • G. Böhm, Hopf algebroids, (a chapter of) Handbook of algebra, Vol. 6, ed. by

    M. Hazewinkel, Elsevier 2009, 173–236 arxiv:math.RA/0805.3806

  • G. Böhm, K. Szlachányi, Hopf algebroids with bijective antipodes: axioms, integrals and duals, Comm. Algebra 32 (11) (2004) 4433 - 4464 math.QA/0305136
  • T. Brzeziński, G. Militaru, Bialgebroids, × A\times_A-bialgebras and duality, J. Algebra 251: 279-294, 2002 math.QA/0012164
  • D. Chikhladze, Category of quantum categories, Theory and Applications of Categories 25 (2011) 1 - 37. (pdf)

A class of examples of such Hopf algebroids internally in a symmetric monoidal category of filtered cofiltered vector spaces is in

  • M. Stojić, PhD thesis, Completed Hopr algebroids, University of Zagreb, 2017

A somewhat less canonical version of the same main subexample, written in coordinates, and with somewhat ad hoc treatment of completions (focusing on global cofiltrations only) is in

  • S. Meljanac, Z. Škoda, M. Stojić, Lie algebra type noncommutative phase spaces are Hopf algebroids, Lett. Math. Phys. 107:3, 475–503 (2017) enhanced pdf (free for online use) doi arxiv/1409.8188

This starts with a different concept of bialgebroid, which is discussed here on the nLab. Namely: any kk-algebra RR gives a pseudomonoid R e=R opRR^e = R^{op} \otimes R in the bicategory Mod kMod_k of k-algebras, bimodules, and bimodule homomorphisms, and a bialgebroid is then an opmonoidal monad AA on R eR^e. When the fusion (or Galois) operator for this opmonoidal monad is invertible, we say that AA is a Hopf algebroid. In G. Böhm’s work this definition is stated in a less compressed, more down-to-earth way.

A notion of multiplier Hopf algebroid is studied in

  • T. Timmermann, A. Van Daele, Multiplier Hopf algebroids. Basic theory and examples, Commun. Alg. 46:5 (2018) arxiv/1307.0769 doi; Multiplier Hopf algebroids arising from weak multiplier Hopf algebras, arxiv/1406.3509
  • Frank Taipe, Quantum transformation groupoids: An algebraic and analytical approach, PhD thesis (2018) link
category: algebra

Last revised on June 17, 2020 at 09:36:27. See the history of this page for a list of all contributions to it.