# nLab Frechet-Uryson space

FrechetUrysohn spaces

# Frechet–Urysohn spaces

## Idea

A Frechet–Urysohn (or Frechet–Uryson) space is a topological space in which the closure of a subspace may be described using only sequences.

## Definition

Recall that, given any subset $A$ of any topological space, a point $x$ belongs to the closure of $A$ if and only if $x$ is a limit point of at least one net whose elements belong to $A$.

A topological space is Frechet–Uryson (or Frechet–Urysohn) if a point $x$ of the closure of any given subset $A$ of $X$ is a limit point of at least one sequence whose elements belong to $A$.

Axioms: axiom of choice (AC), countable choice (CC).

### Implications

• a metric space has a $\sigma$-locally discrete base

• Nagata-Smirnov metrization theorem

• a second-countable space has a $\sigma$-locally finite base: take the the collection of singeltons of all elements of a countable cover of $X$.

• second-countable spaces are separable: use the axiom of countable choice to choose a point in each set of a countable cover.

• separable spaces satisfy the countable chain condition: given a dense set $D$ and a family $\{U_\alpha : \alpha \in A\}$, the map $D \cap \bigcup_{\alpha \in A} U_\alpha \to A$ assigning $d$ to the unique $\alpha \in A$ with $d \in U_\alpha$ is surjective.

• separable spaces are weakly Lindelöf: given a countable dense subset and an open cover choose for each point of the subset an open from the cover.

• Lindelöf spaces are trivially also weakly Lindelöf.

• a space with a $\sigma$-locally finite base is first countable: obviously, every point is contained in at most countably many sets of a $\sigma$-locally finite base.

• a first-countable space is obviously Fréchet-Urysohn.

• a Fréchet-Uryson space is obviously sequential.

• a sequential space is obviously countably tight.

Last revised on April 5, 2019 at 19:48:15. See the history of this page for a list of all contributions to it.