on chain complexes/model structure on cosimplicial abelian groups
related by the Dold-Kan correspondence
Dugger’s theorem identifies combinatorial model categories as the model category-presentations of locally presentable (infinity,1)-categories.
(Dugger’s theorem)
Every combinatorial model category $C$ is Quillen equivalent to a left Bousfield localization $L_S SPSh(K)_{proj}$ of the global projective model structure on simplicial presheaves $SPSh(K)_{proj}$ on a small category $K$
This is (Dugger 01, theorem 1.1) building on results in (DuggerUniversalHomotopy).
The proof proceeds (the way Dugger presents it, at least) in roughly three steps:
Use that $[C^{op}, sSet_{Quillen}]_{proj}$ is in some precise sense the homotopy- free cocompletion of $C$. This means that every functor $\gamma : C \to B$ from a plain category $C$ to a model category $B$ factors in an essentially unique way through the Yoneda embedding $j : C \to [C^{op},sSet]$ by a Quillen adjunction
The detailed definitions and detailed proof of this are discussed at (∞,1)-category of (∞,1)-presheaves.
For a given combinatorial model category $B$, choose $C := B_\lambda^{cof}$ the full subcategory on a small set (guaranteed to exist since $B$ is locally presentable) of cofibrant $\lambda$-compact objects, for some regular cardinal $\lambda$, and show that the induced Quillen adjunction
induced by the above statement from the inclusion $i : B_\lambda^{cof} \hookrightarrow B$ exhibits $B$ as a homotopy-reflective subcategory in that the derived adjunction counit $\hat i \circ Q \circ R \stackrel{\simeq}{\to} Id$ ($Q$ some cofibrant replacement functor) is a natural weak equivalence on fibrant objects (recall from adjoint functor the characterization of adjoints to full and faithful functors).
Define $S$ to be the set of morphisms in $[(C_\lambda^{cof})^{op}, sSet]$ that the left derived functor $\hat i \circ Q$ of $\hat i$ (here $Q$ is some cofibrant replacement functor) sends to weak equivalences in $B$. Then form the left Bousfield localization $L_S [(C_\lambda^{cof})^{op},sSet]_{proj}$ with respect to this set of morphisms and prove that this is Quillen equivalent to $B$.
Carrying this program through requires the following intermediate results.
First recall from the discussion at (∞,1)-category of (∞,1)-presheaves that to produce the Quilen adjunction $(\hat i \dashv R)$ from $i$, we are to choose a cofibrant resolution functor
of $i : C= B_\lambda^{cof} \to B$.
The adjunct of this is a functor $\tilde I : C \times \Delta \to B$. For each object $b \in B$ write $(C \times \Delta \downarrow b)$ for the slice category induced by this functor.
Lemma (Dugger, prop. 4.2)
For every fibrant object $b \in B$ we have that the homotopy colimit $hocolim (C \times \Delta \downarrow b) \to B)$ is weakly equivalent to $\hat i \circ Q\circ R (b)$.
Corollary (Dugger, cor. 4.4) The induced Quillen adjunction
is a homotopy-reflective embedding precisely if the canonical morphisms
are weak equivalences for every fibrant object $b \in B$.
…
Notice that the theorem just mentions plain combinatorial model categories, not simplicial model categories. But of course by basic facts of enriched category theory $Funct(C^{op}, SSet)$ is an SSet-enriched category and its projective global model structure on functors $Func(C^{op}, SSet)_{proj}$ is compatibly a simplicial model category, as are all its Bousfield localizations. (See model structure on simplicial presheaves for more details.) Therefore an immediate but very useful corollary of the above statement is
Every combinatorial model category is Quillen equivalent to one which is
Locally presentable categories: Cocomplete possibly-large categories generated under filtered colimits by small generators under small relations. Equivalently, accessible reflective localizations of free cocompletions. Accessible categories omit the cocompleteness requirement; toposes add the requirement of a left exact localization.
Dugger’s theorem is due to
based on results in
The interpretation in terms of locally presentable (infinity,1)-categories is due to
Last revised on July 11, 2018 at 11:13:07. See the history of this page for a list of all contributions to it.