Contents

# Contents

## Idea

The Dedekind zeta function is a generalization of the Riemann zeta function from the rational numbers/integers to number fields/their rings of integers.

The analog for function fields is the Weil zeta function, while the generalization to higher dimensional arithmetic geometry are the arithmetic zeta functions.

## Properties

### Special values

For $K$ a number field then all special values of the Dedekind zeta function $\zeta_K(n)$ for integer $n$ happen to be periods (MO comment).

Based on this (Deligne 79) identified critical values of $L$-functions (at certain integers) and conjectured that these are all these are algebraic multiples of determinants of matrices whose entries are periods. For more on this see at special values of L-functions.

### Adelic integral expression

The Dedekind zeta function has an adelic integral expression in direct analogy to that of the Riemann zeta function. This is due to (Tate 50), highlighted by Ivan Fesenko in (Goldfeld-Hundley 11, Interlude remark (1)).

### Functional equation

The functional equation of the Dedekind zeta function follows from its adelic integral representation in direct analogy to how this works for the Riemann zeta function. This is due to (Tate 50), highlighted by Ivan Fesenko in (Goldfeld-Hundley 11, Interlude remark (1)).

### The pole and the class number formula

The Dedekind zeta function $\zeta_K$ of $K$ has a simple pole at $s = 1$. The class number formula says that its residue there is proportional the the product of the regulator of $K$ with the class number of $K$

$\underset{s\to 1}{\lim} (s-1) \zeta_K(s) \propto ClassNumber_K \cdot Regulator_K \,.$

### Relation to other zeta-, theta-, and L-functions

• The Dedekind zeta function $\zeta_K$ is the Artin L-function $L_{K,\sigma}$ for trivial Galois representation

$\zeta_K = L_{K,1} \,.$
• The Dedekind zeta function has an expression as an integral over a kernel given by a Hecke theta function (Kowalski (2.3) (2.4)).

• The Dedekind zeta function of $K$ is equivalently the Hasse-Weil zeta function of $Spec(\mathcal{O}_K)$.

### Analogs over complex curves

The function field analogy in view of the discussion at zeta function of an elliptic differential operator says that the Dedekind zeta function is analogous to the regulated functional trace of a would-be “Dirac operator on Spec(Z)”.

context/function field analogytheta function $\theta$zeta function $\zeta$ (= Mellin transform of $\theta(0,-)$)L-function $L_{\mathbf{z}}$ (= Mellin transform of $\theta(\mathbf{z},-)$)eta function $\eta$special values of L-functions
physics/2d CFTpartition function $\theta(\mathbf{z},\mathbf{\tau}) = Tr(\exp(-\mathbf{\tau} \cdot (D_\mathbf{z})^2))$ as function of complex structure $\mathbf{\tau}$ of worldsheet $\Sigma$ (hence polarization of phase space) and background gauge field/source $\mathbf{z}$analytically continued trace of Feynman propagator $\zeta(s) = Tr_{reg}\left(\frac{1}{(D_{0})^2}\right)^s = \int_{0}^\infty \tau^{s-1} \,\theta(0,\tau)\, d\tau$analytically continued trace of Feynman propagator in background gauge field $\mathbf{z}$: $L_{\mathbf{z}}(s) \coloneqq Tr_{reg}\left(\frac{1}{(D_{\mathbf{z}})^2}\right)^s = \int_{0}^\infty \tau^{s-1} \,\theta(\mathbf{z},\tau)\, d\tau$analytically continued trace of Dirac propagator in background gauge field $\mathbf{z}$ $\eta_{\mathbf{z}}(s) = Tr_{reg} \left(\frac{sgn(D_{\mathbf{z}})}{ { \vert D_{\mathbf{z}} } \vert }\right)^s$regularized 1-loop vacuum amplitude $pv\, L_{\mathbf{z}}(1) = Tr_{reg}\left(\frac{1}{(D_{\mathbf{z}})^2}\right)$ / regularized fermionic 1-loop vacuum amplitude $pv\, \eta_{\mathbf{z}}(1)= Tr_{reg} \left( \frac{D_{\mathbf{z}}}{(D_{\mathbf{z}})^2} \right)$ / vacuum energy $-\frac{1}{2}L_{\mathbf{z}}^\prime(0) = Z_H = \frac{1}{2}\ln\;det_{reg}(D_{\mathbf{z}}^2)$
Riemannian geometry (analysis)zeta function of an elliptic differential operatorzeta function of an elliptic differential operatoreta function of a self-adjoint operatorfunctional determinant, analytic torsion
complex analytic geometrysection $\theta(\mathbf{z},\mathbf{\tau})$ of line bundle over Jacobian variety $J(\Sigma_{\mathbf{\tau}})$ in terms of covering coordinates $\mathbf{z}$ on $\mathbb{C}^g \to J(\Sigma_{\mathbf{\tau}})$zeta function of a Riemann surfaceSelberg zeta functionDedekind eta function
arithmetic geometry for a function fieldGoss zeta function (for arithmetic curves) and Weil zeta function (in higher dimensional arithmetic geometry)
arithmetic geometry for a number fieldHecke theta function, automorphic formDedekind zeta function (being the Artin L-function $L_{\mathbf{z}}$ for $\mathbf{z} = 0$ the trivial Galois representation)Artin L-function $L_{\mathbf{z}}$ of a Galois representation $\mathbf{z}$, expressible “in coordinates” (by Artin reciprocity) as a finite-order Hecke L-function (for 1-dimensional representations) and generally (via Langlands correspondence) by an automorphic L-function (for higher dimensional reps)class number $\cdot$ regulator
arithmetic geometry for $\mathbb{Q}$Jacobi theta function ($\mathbf{z} = 0$)/ Dirichlet theta function ($\mathbf{z} = \chi$ a Dirichlet character)Riemann zeta function (being the Dirichlet L-function $L_{\mathbf{z}}$ for Dirichlet character $\mathbf{z} = 0$)Artin L-function of a Galois representation $\mathbf{z}$ , expressible “in coordinates” (via Artin reciprocity) as a Dirichlet L-function (for 1-dimensional Galois representations) and generally (via Langlands correspondence) as an automorphic L-function

Other identifications/analogies of the Riemann zeta function (and more generally the Dedekind zeta-function) with partition functions in physics have been proposed, in particular the Bost-Connes system.

context/function field analogytheta function $\theta$zeta function $\zeta$ (= Mellin transform of $\theta(0,-)$)L-function $L_{\mathbf{z}}$ (= Mellin transform of $\theta(\mathbf{z},-)$)eta function $\eta$special values of L-functions
physics/2d CFTpartition function $\theta(\mathbf{z},\mathbf{\tau}) = Tr(\exp(-\mathbf{\tau} \cdot (D_\mathbf{z})^2))$ as function of complex structure $\mathbf{\tau}$ of worldsheet $\Sigma$ (hence polarization of phase space) and background gauge field/source $\mathbf{z}$analytically continued trace of Feynman propagator $\zeta(s) = Tr_{reg}\left(\frac{1}{(D_{0})^2}\right)^s = \int_{0}^\infty \tau^{s-1} \,\theta(0,\tau)\, d\tau$analytically continued trace of Feynman propagator in background gauge field $\mathbf{z}$: $L_{\mathbf{z}}(s) \coloneqq Tr_{reg}\left(\frac{1}{(D_{\mathbf{z}})^2}\right)^s = \int_{0}^\infty \tau^{s-1} \,\theta(\mathbf{z},\tau)\, d\tau$analytically continued trace of Dirac propagator in background gauge field $\mathbf{z}$ $\eta_{\mathbf{z}}(s) = Tr_{reg} \left(\frac{sgn(D_{\mathbf{z}})}{ { \vert D_{\mathbf{z}} } \vert }\right)^s$regularized 1-loop vacuum amplitude $pv\, L_{\mathbf{z}}(1) = Tr_{reg}\left(\frac{1}{(D_{\mathbf{z}})^2}\right)$ / regularized fermionic 1-loop vacuum amplitude $pv\, \eta_{\mathbf{z}}(1)= Tr_{reg} \left( \frac{D_{\mathbf{z}}}{(D_{\mathbf{z}})^2} \right)$ / vacuum energy $-\frac{1}{2}L_{\mathbf{z}}^\prime(0) = Z_H = \frac{1}{2}\ln\;det_{reg}(D_{\mathbf{z}}^2)$
Riemannian geometry (analysis)zeta function of an elliptic differential operatorzeta function of an elliptic differential operatoreta function of a self-adjoint operatorfunctional determinant, analytic torsion
complex analytic geometrysection $\theta(\mathbf{z},\mathbf{\tau})$ of line bundle over Jacobian variety $J(\Sigma_{\mathbf{\tau}})$ in terms of covering coordinates $\mathbf{z}$ on $\mathbb{C}^g \to J(\Sigma_{\mathbf{\tau}})$zeta function of a Riemann surfaceSelberg zeta functionDedekind eta function
arithmetic geometry for a function fieldGoss zeta function (for arithmetic curves) and Weil zeta function (in higher dimensional arithmetic geometry)
arithmetic geometry for a number fieldHecke theta function, automorphic formDedekind zeta function (being the Artin L-function $L_{\mathbf{z}}$ for $\mathbf{z} = 0$ the trivial Galois representation)Artin L-function $L_{\mathbf{z}}$ of a Galois representation $\mathbf{z}$, expressible “in coordinates” (by Artin reciprocity) as a finite-order Hecke L-function (for 1-dimensional representations) and generally (via Langlands correspondence) by an automorphic L-function (for higher dimensional reps)class number $\cdot$ regulator
arithmetic geometry for $\mathbb{Q}$Jacobi theta function ($\mathbf{z} = 0$)/ Dirichlet theta function ($\mathbf{z} = \chi$ a Dirichlet character)Riemann zeta function (being the Dirichlet L-function $L_{\mathbf{z}}$ for Dirichlet character $\mathbf{z} = 0$)Artin L-function of a Galois representation $\mathbf{z}$ , expressible “in coordinates” (via Artin reciprocity) as a Dirichlet L-function (for 1-dimensional Galois representations) and generally (via Langlands correspondence) as an automorphic L-function

### Function field analogy

function field analogy

number fields (“function fields of curves over F1”)function fields of curves over finite fields $\mathbb{F}_q$ (arithmetic curves)Riemann surfaces/complex curves
affine and projective line
$\mathbb{Z}$ (integers)$\mathbb{F}_q[z]$ (polynomials, function algebra on affine line $\mathbb{A}^1_{\mathbb{F}_q}$)$\mathcal{O}_{\mathbb{C}}$ (holomorphic functions on complex plane)
$\mathbb{Q}$ (rational numbers)$\mathbb{F}_q(z)$ (rational functions)meromorphic functions on complex plane
$p$ (prime number/non-archimedean place)$x \in \mathbb{F}_p$$x \in \mathbb{C}$
$\infty$ (place at infinity)$\infty$
$Spec(\mathbb{Z})$ (Spec(Z))$\mathbb{A}^1_{\mathbb{F}_q}$ (affine line)complex plane
$Spec(\mathbb{Z}) \cup place_{\infty}$$\mathbb{P}_{\mathbb{F}_q}$ (projective line)Riemann sphere
$\partial_p \coloneqq \frac{(-)^p - (-)}{p}$ (Fermat quotient)$\frac{\partial}{\partial z}$ (coordinate derivation)
genus of the rational numbers = 0genus of the Riemann sphere = 0
formal neighbourhoods
$\mathbb{Z}_p$ (p-adic integers)$\mathbb{F}_q[ [ t -x ] ]$ (power series around $x$)$\mathbb{C}[ [z-x] ]$ (holomorphic functions on formal disk around $x$)
$Spf(\mathbb{Z}_p)\underset{Spec(\mathbb{Z})}{\times} X$ (“$p$-arithmetic jet space” of $X$ at $p$)formal disks in $X$
$\mathbb{Q}_p$ (p-adic numbers)$\mathbb{F}_q((z-x))$ (Laurent series around $x$)$\mathbb{C}((z-x))$ (holomorphic functions on punctured formal disk around $x$)
$\mathbb{A}_{\mathbb{Q}} = \underset{p\; place}{\prod^\prime}\mathbb{Q}_p$ (ring of adeles)$\mathbb{A}_{\mathbb{F}_q((t))}$ ( adeles of function field )$\underset{x \in \mathbb{C}}{\prod^\prime} \mathbb{C}((z-x))$ (restricted product of holomorphic functions on all punctured formal disks, finitely of which do not extend to the unpunctured disks)
$\mathbb{I}_{\mathbb{Q}} = GL_1(\mathbb{A}_{\mathbb{Q}})$ (group of ideles)$\mathbb{I}_{\mathbb{F}_q((t))}$ ( ideles of function field )$\underset{x \in \mathbb{C}}{\prod^\prime} GL_1(\mathbb{C}((z-x)))$
theta functions
Jacobi theta function
zeta functions
Riemann zeta functionGoss zeta function
branched covering curves
$K$ a number field ($\mathbb{Q} \hookrightarrow K$ a possibly ramified finite dimensional field extension)$K$ a function field of an algebraic curve $\Sigma$ over $\mathbb{F}_p$$K_\Sigma$ (sheaf of rational functions on complex curve $\Sigma$)
$\mathcal{O}_K$ (ring of integers)$\mathcal{O}_{\Sigma}$ (structure sheaf)
$Spec_{an}(\mathcal{O}_K) \to Spec(\mathbb{Z})$ (spectrum with archimedean places)$\Sigma$ (arithmetic curve)$\Sigma \to \mathbb{C}P^1$ (complex curve being branched cover of Riemann sphere)
$\frac{(-)^p - \Phi(-)}{p}$ (lift of Frobenius morphism/Lambda-ring structure)$\frac{\partial}{\partial z}$
genus of a number fieldgenus of an algebraic curvegenus of a surface
formal neighbourhoods
$v$ prime ideal in ring of integers $\mathcal{O}_K$$x \in \Sigma$$x \in \Sigma$
$K_v$ (formal completion at $v$)$\mathbb{C}((z_x))$ (function algebra on punctured formal disk around $x$)
$\mathcal{O}_{K_v}$ (ring of integers of formal completion)$\mathbb{C}[ [ z_x ] ]$ (function algebra on formal disk around $x$)
$\mathbb{A}_K$ (ring of adeles)$\prod^\prime_{x\in \Sigma} \mathbb{C}((z_x))$ (restricted product of function rings on all punctured formal disks around all points in $\Sigma$)
$\mathcal{O}$$\prod_{x\in \Sigma} \mathbb{C}[ [z_x] ]$ (function ring on all formal disks around all points in $\Sigma$)
$\mathbb{I}_K = GL_1(\mathbb{A}_K)$ (group of ideles)$\prod^\prime_{x\in \Sigma} GL_1(\mathbb{C}((z_x)))$
Galois theory
Galois group$\pi_1(\Sigma)$ fundamental group
Galois representationflat connection (“local system”) on $\Sigma$
class field theory
class field theorygeometric class field theory
Hilbert reciprocity lawArtin reciprocity lawWeil reciprocity law
$GL_1(K)\backslash GL_1(\mathbb{A}_K)$ (idele class group)
$GL_1(K)\backslash GL_1(\mathbb{A}_K)/GL_1(\mathcal{O})$$Bun_{GL_1}(\Sigma)$ (moduli stack of line bundles, by Weil uniformization theorem)
non-abelian class field theory and automorphy
number field Langlands correspondencefunction field Langlands correspondencegeometric Langlands correspondence
$GL_n(K) \backslash GL_n(\mathbb{A}_K)//GL_n(\mathcal{O})$ (constant sheaves on this stack form unramified automorphic representations)$Bun_{GL_n(\mathbb{C})}(\Sigma)$ (moduli stack of bundles on the curve $\Sigma$, by Weil uniformization theorem)
Tamagawa-Weil for number fieldsTamagawa-Weil for function fields
theta functions
Hecke theta functionfunctional determinant line bundle of Dirac operator/chiral Laplace operator on $\Sigma$
zeta functions
Dedekind zeta functionWeil zeta functionzeta function of a Riemann surface/of the Laplace operator on $\Sigma$
higher dimensional spaces
zeta functionsHasse-Weil zeta function
• John Tate, Fourier analysis in number fields, and Hecke’s zeta-functions, Algebraic Number Theory (Proc. Instructional Conf., Brighton, 1965), Thompson, Washington, D.C., pp. 305–34 1950

• Wikipedia, Dedekind zeta function

• E. Kowalski, section 1.4 of Automorphic forms, L-functions and number theory (March 12–16) Three Introductory lectures (pdf)

• Dorian Goldfeld, Joseph Hundley, chapter 2 of Automorphic representations and L-functions for the general linear group, Cambridge Studies in Advanced Mathematics 129, 2011 (pdf)