Homotopy Type Theory limit of a net > history (Rev #9, changes)

Showing changes from revision #8 to #9: Added | Removed | Changed

Contents

Definition

In premetric spaces

Let T R T R be a dense integral subdomain of the directed rational type numbers , and let S S \mathbb{Q} be and a letTR + T R_{+} - be the positive terms ofRR. Let SS be a R +R_{+}-premetric space. Given a directed type II, a term l:Sl:S is a limit of a net x:ISx: I \to S or that xx converges to ll if ll comes with a term

λ: ϵ:TR + N:I i:I(iN)(x i ϵl) \lambda: \prod_{\epsilon:T} \prod_{\epsilon:R_{+}} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (x_i \sim_{\epsilon} l) \Vert

A limit of a sequence a:Sa:\mathbb{N} \to S is usually written as

lim xa(x)\lim_{x \to \infty} a(x)

Cauchy approximations

Let A R A R be a dense integral subdomain of the dense rational numbers Archimedean ordered abelian group\mathbb{Q} with and a let point1R +:A 1:A R_{+} and be a the term positive terms of ζ R:0<1 \zeta: R 0 \lt 1. Let A + a:A(0<a)A_{+} \coloneqq \sum_{a:A} (0 \lt a) be the positive cone? of AA.

A limit of a A R + A_{+} R_{+}-Cauchy approximation x: A R +S x: A_{+} R_{+} \to S is a term l:Sl:S with

x: A R +Sc(x): δ: A R + η: A R +x δ δηl x:A_{+} x:R_{+} \to S \vdash c(x):\prod_{\delta:A_{+}} c(x):\prod_{\delta:R_{+}} \prod_{\eta:A_{+}} \prod_{\eta:R_{+}} x_\delta \sim_{\delta \oplus \eta} l

In convergence spaces

See also

Revision on March 31, 2022 at 03:02:22 by Anonymous?. See the history of this page for a list of all contributions to it.