Homotopy Type Theory limit of a net > history (Rev #12, changes)

Showing changes from revision #11 to #12: Added | Removed | Changed

Contents

Definition

In rational numbers

Let \mathbb{Q} be the rational numbers and let +\mathbb{Q}_{+} be the type of positive rational numbers. Given a directed type II, a term l:l:\mathbb{Q} is a limit of a net x:Ix: I \to \mathbb{Q} or that xx converges to ll if ll comes with a term

λ: ϵ: + N:I i:I(iN)(|x il|<ϵ)\lambda: \prod_{\epsilon:\mathbb{Q}_{+}} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (\vert x_i - l \vert \lt \epsilon) \Vert

The type of all limits of a net is defined as

limx l:( ϵ: + N:I i:I(iN)(|x il|<ϵ))\lim x \coloneqq \sum_{l:\mathbb{Q}} \left(\prod_{\epsilon:\mathbb{Q}_{+}} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (\vert x_i - l \vert \lt \epsilon) \Vert\right)

A limit of a sequence a:a:\mathbb{N} \to \mathbb{Q} is usually written as

lim xa(x)\lim_{x \to \infty} a(x)

In premetric spaces

Let RR be a dense integral subdomain of the rational numbers \mathbb{Q} and let R +R_{+} be the positive terms of RR. Let SS be a R +R_{+}-premetric space. Given a directed type II, a term l:Sl:S is a limit of a net x:ISx: I \to S or that xx converges to ll if ll comes with a term

λ: ϵ:R + N:I i:I(iN)(x i ϵl)\lambda: \prod_{\epsilon:R_{+}} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (x_i \sim_{\epsilon} l) \Vert

The type of all limits of a net is defined as

limx l:S( ϵ:R + N:I i:I(iN)(x i ϵl))\lim x \coloneqq \sum_{l:S} \left(\prod_{\epsilon:R_{+}} \Vert \sum_{N:I} \prod_{i:I} (i \geq N) \to (x_i \sim_{\epsilon} l) \Vert\right)

A limit of a sequence a:Sa:\mathbb{N} \to S is usually written as

lim xa(x)\lim_{x \to \infty} a(x)

Cauchy approximations

Let RR be a dense integral subdomain of the rational numbers \mathbb{Q} and let R +R_{+} be the positive terms of RR.

A limit of a R +R_{+}-Cauchy approximation x:R +Sx: R_{+} \to S is a term l:Sl:S with

x:R +Sc(x): δ:R + η:R +x δ δηlx:R_{+} \to S \vdash c(x):\prod_{\delta:R_{+}} \prod_{\eta:R_{+}} x_\delta \sim_{\delta \oplus \eta} l

In Most convergence general spaces definition

LetSS be a type with a predicate \to between the type of all nets in SS

I:𝒰isDirected(I)×(IS)\sum_{I:\mathcal{U}} isDirected(I) \times (I \to S)

and SS itself.

Given a directed type II, a term l:Sl:S is a limit of a net x:ISx: I \to S or that xx converges to ll if the proposition xlx \to l is contractible.

The type of all limits of a net is defined as

limx l:Sxl\lim x \coloneqq \sum_{l:S} x \to l

See also

Revision on March 31, 2022 at 06:30:06 by Anonymous?. See the history of this page for a list of all contributions to it.