Homotopy Type Theory SEAR > history (Rev #3, changes)

Showing changes from revision #2 to #3: Added | Removed | Changed

Idea

Mike Shulman’s dependently typed first-order theory SEAR.

Definition

A model of SEAR CC consists of

  • A type Ob(C)Ob(C) , whose terms are called objects. “sets”.

  • For each object “set”A:Ob(C)A:Ob(C), a set El(A)El(A) , whose terms are called elements. “elements”.

  • For each object “set”A:Ob(C)A:Ob(C) and B:Ob(C)B:Ob(C), a set Hom(A,B)Hom(A,B) , whose elements terms are called morphisms. “relations”.

  • For every each object “set”A:Ob(C)A:Ob(C) and B:Ob(C)B:Ob(C) , there is a functionP:Hom(A,B)(El(A)×El(B)Prop 𝒰)P:Hom(A,B) \to (El(A) \times El(B) \to Prop_\mathcal{U})

  • For every each object “set”A:Ob(C)A:Ob(C), B:Ob(C)B:Ob(C), C:Ob(C)C:Ob(C) , there is a function

    ()():Hom(B,C)×Hom(A,B)Hom(A,C)(-)\circ(-):Hom(B,C) \times Hom(A,B) \to Hom(A,C)

    such and that a term

    γ: a:El(A) c:El(C)P(RS)(a,c)[ b:El(B)P(R)(a,b)×P(S)(b,c)] \prod_{a:El(A)} \gamma:\prod_{a:El(A)} \prod_{c:El(C)} P(R \circ S)(a, c) \iff \left[\sum_{b:El(B)} P(R)(a,b) \times P(S)(b,c)\right]

    Let where the type of all maps inC[T] C \left[T\right] be is defined the as propositional truncation of the typeTT.

    Map(a,b) f:hom A(a,b) a:El(A)isContr( b:El(B)P(f)(a,b))Map(a, b) \coloneqq \sum_{f:hom_A(a,b)} \prod_{a:El(A)} isContr\left(\sum_{b:El(B)} P(f)(a,b)\right)
  • For each object A:Ob(C)A:Ob(C) and B:Ob(C)B:Ob(C), there is a function ()(()):Map(A,B)×El(A)El(B)(-)((-)): Map(A,B) \times El(A) \to El(B) such that P(f)(a,f(a))P(f)(a, f(a)) is contractible.

  • There exists an object A:Ob(C)A:Ob(C) with a term p:[El(A)]p:\left[El(A)\right], where [T]\left[T\right] is the propositional truncation of the type TT.

  • For every object A:Ob(C)A:Ob(C) and B:Ob(C)B:Ob(C) and morphism R:Hom(A,B)R:Hom(A,B), there is an object |R|:Ob(C)\vert R \vert:Ob(C) and maps f:Hom(|R|,A)f:Hom(\vert R \vert, A), g:Hom(|R|,A)g:Hom(\vert R \vert, A), such that R=f gR = f^\dagger \circ g and for two elements x:El(|R|)x:El(\vert R \vert) and y:El(|R|)y:El(\vert R \vert), f(x)=f(y)f(x) = f(y) and g(x)=g(y)g(x) = g(y) imply x=yx = y.

  • For every object A:Ob(C)A:Ob(C), there is an object 𝒫(A)\mathcal{P}(A) and a morphism A:Hom(A,𝒫(A))\in_A:Hom(A, \mathcal{P}(A)) such that for each morphism R:Hom(A,B)R:Hom(A,B), there exists a map χ R:Hom(A,P(B))\chi_R:Hom(A,P(B)) such that R=( B )χ RR = (\in_B^\dagger) \circ \chi_R.

  • There is an object :Ob(C)\mathbb{N}:Ob(C) with maps 0:El()0:El(\mathbb{N}) and s:Hom(,)s:Hom(\mathbb{N},\mathbb{N}), such that for every object AA with maps 0 A:El(A)0_A:El(A) and s A:Hom(A,A)s_A:Hom(A,A), there is a map f:Hom(,A)f:Hom(\mathbb{N},A) such that f(0)=0 Af(0) = 0_A and for all elements n:El()n:El(\mathbb{N}), f(s(n))=s A(f(n))f(s(n)) = s_A(f(n)).

  • For every object A:Ob(C)A:Ob(C) and function P:El(A)×Ob(C)Prop 𝒰P:El(A) \times Ob(C) \to Prop_\mathcal{U}, there exists an object B:Ob(C)B:Ob(C) with a map p:Hom(A,B)p:Hom(A,B) and a BB-indexed family of objects M:Hom(𝟙,B)𝒰M:Hom(\mathbb{1},B) \to \mathcal{U} such that (1) for every element b:El(B)b:El(B), P(p(b),M(b))P(p(b),M(b)) is contractible and (2) for every element a:El(A)a:El(A), if there exists an object X:Ob(C)X:Ob(C) such that P(a,X)P(a,X) is contractible, then aa is in the image of pp.

Let the type of all functional entire “relations” between “sets” A:Ob(C)A:Ob(C) and B:Ob(C)B:Ob(C) in CC be defined as

Map(A,B) f:Hom(A,B) a:El(A)isContr( b:El(B)P(f)(a,b))Map(A, B) \coloneqq \sum_{f:Hom(A,B)} \prod_{a:El(A)} isContr\left(\sum_{b:El(B)} P(f)(a,b)\right)
  • For each “set” A:Ob(C)A:Ob(C) and B:Ob(C)B:Ob(C), a function ()(()):Map(A,B)×El(A)El(B)(-)((-)): Map(A,B) \times El(A) \to El(B) and a term δ:isContr(P(f)(a,f(a)))\delta:isContr(P(f)(a, f(a))).

  • A “set” A:Ob(C)A:Ob(C) with a term ϵ:[El(A)]\epsilon:\left[El(A)\right].

  • For each “set” A:Ob(C)A:Ob(C) and B:Ob(C)B:Ob(C) and “relation” R:Hom(A,B)R:Hom(A,B), a “set” |R|:Ob(C)\vert R \vert:Ob(C) and functional entire “relation” f:Hom(|R|,A)f:Hom(\vert R \vert, A), g:Hom(|R|,B)g:Hom(\vert R \vert, B), and a term q:R=f gq:R = f^\dagger \circ g and a term

    η: x:El(|R|) y:El(|R|)(f(x)=f(y))×(g(x)=g(y))(x=y)\eta:\prod_{x:El(\vert R \vert)} \prod_{y:El(\vert R \vert)} (f(x) = f(y)) \times (g(x) = g(y)) \to (x = y)
  • For each “set” A:Ob(C)A:Ob(C), a “set” 𝒫(A)\mathcal{P}(A) and a “relation” A:Hom(A,𝒫(A))\in_A:Hom(A, \mathcal{P}(A)) and a term

    ι: B:Ob(C) R:Hom(A,B)[ χ R:Hom(A,P(B))isMap(χ R)×(R=( B )χ R)]\iota:\prod_{B:Ob(C)} \prod_{R:Hom(A,B)} \left[\sum_{\chi_R:Hom(A,P(B))} isMap(\chi_R) \times (R = (\in_B^\dagger) \circ \chi_R)\right]
  • A “set” :Ob(C)\mathbb{N}:Ob(C) with functional entire “relations” 0:El()0:El(\mathbb{N}) and s:Hom(,)s:Hom(\mathbb{N},\mathbb{N}) and a term

κ: A:Ob(C) 0 A:El(A) s A:Hom(A,A)[ f:Hom(,A)(f(0)=0 A)× n:El()(f(s(n))=s A(f(n)))]\kappa:\prod_{A:Ob(C)} \prod_{0_A:El(A)} \prod_{s_A:Hom(A,A)} \left[\sum_{f:Hom(\mathbb{N},A)} (f(0) = 0_A) \times \prod_{n:El(\mathbb{N})} (f(s(n)) = s_A(f(n)))\right]
  • For each “set” A:Ob(C)A:Ob(C) and function Q:El(A)×Ob(C)Prop 𝒰Q:El(A) \times Ob(C) \to Prop_\mathcal{U}, a “set” B:Ob(C)B:Ob(C) with a functional entire “relation” p:Hom(B,A)p:Hom(B,A), a function M:El(B)Ob(C)M:El(B) \to Ob(C) and terms
    λ: b:El(B)isContr(Q(p(b),M(b)))\lambda:\prod_{b:El(B)} isContr(Q(p(b),M(b)))
    μ: a:El(A)[ X:Ob(C)isContr(Q(a,X))][ b:Bp(b)=a]\mu:\prod_{a:El(A)} \left[\sum_{X:Ob(C)} isContr(Q(a,X))\right] \to \left[\sum_{b:B} p(b) = a\right]

See also

Revision on April 21, 2022 at 02:19:33 by Anonymous?. See the history of this page for a list of all contributions to it.