Homotopy Type Theory SEAR > history (Rev #2, changes)

Showing changes from revision #1 to #2: Added | Removed | Changed

Idea

Mike Shulman’s dependently typed first-order theory SEAR.

Definition

A model of SEAR is adagger 2-posetCC consists ofCC with a set El(A)El(A) of elements in AA for every object A:Ob(C)A:Ob(C) such that

  • Nontriviality: A There type exists an objectA:Ob(C) A:Ob(C) Ob(C) , with whose a terms term are called objects.p:[El(A)]p:\left[El(A)\right], where [T]\left[T\right] is the propositional truncation of the type TT.

  • Relational For comprehension: each for every objectA:Ob(C)A:Ob(C) , and aB:Ob(C)B:Ob(C)set there is a functionP:Hom(A,B)(El(A)×El(B)Prop 𝒰) P:Hom(A,B) El(A) \to (El(A) \times El(B) \to Prop_\mathcal{U}), whose terms are called elements.

  • Function evaluation: For every each objectmapA:Ob(C)A:Ob(C) and f B: Hom Ob( A C,B) f:Hom(A,B) B:Ob(C) , there is a function()(()):Hom(A,B)×El(A)El(B)(-)((-)): Hom(A,B) \times El(A) \to El(B)set such that P Hom( f A)(a, f B(a)) P(f)(a, Hom(A,B) f(a)) , is whose elements are called morphisms.contractible.

  • Tabulations: For for every objectA:Ob(C)A:Ob(C) and B:Ob(C)B:Ob(C) and there morphism is a function R P:Hom(A,B)(El(A)×El(B)Prop 𝒰) R:Hom(A,B) P:Hom(A,B) \to (El(A) \times El(B) \to Prop_\mathcal{U}), there is an object |R|:Ob(C)\vert R \vert:Ob(C) and maps f:Hom(|R|,A)f:Hom(\vert R \vert, A), g:Hom(|R|,A)g:Hom(\vert R \vert, A), such that R=f gR = f^\dagger \circ g and for two elements x:El(|R|)x:El(\vert R \vert) and y:El(|R|)y:El(\vert R \vert), f(x)=f(y)f(x) = f(y) and g(x)=g(y)g(x) = g(y) imply x=yx = y.

  • Power For sets: for every objectA:Ob(C)A:Ob(C) , there is an object 𝒫 B:Ob( A C) \mathcal{P}(A) B:Ob(C) , and a morphism AC: Hom Ob( A C,𝒫(A)) \in_A:Hom(A, C:Ob(C) \mathcal{P}(A)) such there that is for a each function morphismR:Hom(A,B)R:Hom(A,B), there exists a map χ R:Hom(A,P(B))\chi_R:Hom(A,P(B)) such that R=( B )χ RR = (\in_B^\dagger) \circ \chi_R.

    ()():Hom(B,C)×Hom(A,B)Hom(A,C)(-)\circ(-):Hom(B,C) \times Hom(A,B) \to Hom(A,C)

    such that

    a:El(A) c:El(C)P(RS)(a,c)[ b:El(B)P(R)(a,b)×P(S)(b,c)]\prod_{a:El(A)} \prod_{c:El(C)} P(R \circ S)(a, c) \iff \left[\sum_{b:El(B)} P(R)(a,b) \times P(S)(b,c)\right]

    Let the type of all maps in CC be defined as

    Map(a,b) f:hom A(a,b) a:El(A)isContr( b:El(B)P(f)(a,b))Map(a, b) \coloneqq \sum_{f:hom_A(a,b)} \prod_{a:El(A)} isContr\left(\sum_{b:El(B)} P(f)(a,b)\right)
  • Natural For numbers: each there is an object A:Ob(C) \mathbb{N}:Ob(C) A:Ob(C) with and maps0B: El Ob( C) 0:El(\mathbb{N}) B:Ob(C) , and there is a functions()(()): Hom Map( A, B)×El(A)El(B) s:Hom(\mathbb{N},\mathbb{N}) (-)((-)): Map(A,B) \times El(A) \to El(B) , such that for every object A P(f)(a,f(a)) A P(f)(a, f(a)) with is maps0 A:El(A)0_A:El(A)contractible and s A:Hom(A,A)s_A:Hom(A,A), there is a map f:Af:\mathbb{N} \to A such that f(0)=0 Af(0) = 0_A and fs=s Aff \circ s = s_A \circ f.

  • Collection: There for exists every an objectA:Ob(C)A:Ob(C) and with function a term P p:El[El(A)](A)×Ob(C)Prop 𝒰 P:El(A) p:\left[El(A)\right] \times Ob(C) \to Prop_\mathcal{U} , there where exists an objectB[T]:Ob(C) B:Ob(C) \left[T\right] with is a the map propositional truncation of the type p T:Hom(A,B) p:Hom(A,B) T and a BB-indexed family of objects M:Hom(𝟙,B)𝒰M:Hom(\mathbb{1},B) \to \mathcal{U} such that (1) for every element b:El(B)b:El(B), P(p(b),M(b))P(p(b),M(b)) is contractible and (2) for every element a:El(A)a:El(A), if there exists an object X:Ob(C)X:Ob(C) such that P(a,X)P(a,X) is contractible, then aa is in the image of pp.

  • For every object A:Ob(C)A:Ob(C) and B:Ob(C)B:Ob(C) and morphism R:Hom(A,B)R:Hom(A,B), there is an object |R|:Ob(C)\vert R \vert:Ob(C) and maps f:Hom(|R|,A)f:Hom(\vert R \vert, A), g:Hom(|R|,A)g:Hom(\vert R \vert, A), such that R=f gR = f^\dagger \circ g and for two elements x:El(|R|)x:El(\vert R \vert) and y:El(|R|)y:El(\vert R \vert), f(x)=f(y)f(x) = f(y) and g(x)=g(y)g(x) = g(y) imply x=yx = y.

  • For every object A:Ob(C)A:Ob(C), there is an object 𝒫(A)\mathcal{P}(A) and a morphism A:Hom(A,𝒫(A))\in_A:Hom(A, \mathcal{P}(A)) such that for each morphism R:Hom(A,B)R:Hom(A,B), there exists a map χ R:Hom(A,P(B))\chi_R:Hom(A,P(B)) such that R=( B )χ RR = (\in_B^\dagger) \circ \chi_R.

  • There is an object :Ob(C)\mathbb{N}:Ob(C) with maps 0:El()0:El(\mathbb{N}) and s:Hom(,)s:Hom(\mathbb{N},\mathbb{N}), such that for every object AA with maps 0 A:El(A)0_A:El(A) and s A:Hom(A,A)s_A:Hom(A,A), there is a map f:Hom(,A)f:Hom(\mathbb{N},A) such that f(0)=0 Af(0) = 0_A and for all elements n:El()n:El(\mathbb{N}), f(s(n))=s A(f(n))f(s(n)) = s_A(f(n)).

  • For every object A:Ob(C)A:Ob(C) and function P:El(A)×Ob(C)Prop 𝒰P:El(A) \times Ob(C) \to Prop_\mathcal{U}, there exists an object B:Ob(C)B:Ob(C) with a map p:Hom(A,B)p:Hom(A,B) and a BB-indexed family of objects M:Hom(𝟙,B)𝒰M:Hom(\mathbb{1},B) \to \mathcal{U} such that (1) for every element b:El(B)b:El(B), P(p(b),M(b))P(p(b),M(b)) is contractible and (2) for every element a:El(A)a:El(A), if there exists an object X:Ob(C)X:Ob(C) such that P(a,X)P(a,X) is contractible, then aa is in the image of pp.

See also

Revision on April 20, 2022 at 22:16:55 by Anonymous?. See the history of this page for a list of all contributions to it.