Homotopy Type Theory Cauchy structure > history (Rev #9, changes)

Showing changes from revision #8 to #9: Added | Removed | Changed

Definition

Let R A R A be a Archimedean ordered integral domain with a dense strict Archimedean order ordered abelian group , and with let a pointR +1:A R_{+} 1:A be and the a termsemiring?ζ:0<1\zeta: 0 \lt 1 . of Let positive terms inRA + a:A(0<a) R A_{+} \coloneqq \sum_{a:A} (0 \lt a) be the positive cone? of AA.

A R A + R_{+} A_{+}-Cauchy structure is a R A + R_{+} A_{+}-premetric space SS with

  • a function inj: R AS inj: R A \to S

  • a function lim:C(S, R A +)S lim: C(S, R_{+}) A_{+}) \to S, where C(S, R A +) C(S, R_{+}) A_{+}) is the type of R A + R_{+} A_{+}-Cauchy approximations in SS

  • dependent families of terms

a:S,b:Seq(a,b): ϵ: R A +(a ϵb)(a= Sb) a:S, b:S \vdash eq(a, b): \Vert \prod_{\epsilon:R_{+}} \prod_{\epsilon:A_{+}} (a \sim_{\epsilon} b) \Vert \to (a =_S b)
a: R A,b: R A,ϵ: R A +μ R A, R A(a,b,ϵ):(|ab|<ϵ)(inj(a) ϵinj(b)) a:R, a:A, b:R, b:A, \epsilon:R_{+} \epsilon:A_{+} \vdash \mu_{R, \mu_{A, R}(a, A}(a, b, \epsilon): (\vert a - b \vert \lt \epsilon) \to (inj(a) \sim_{\epsilon} inj(b))
a: R A,b:C S(R +),ϵ: R A +,η: R A +μ R A,C(S, R A +)(a,b,ϵ,η):(inj(a) ϵb η)(inj(a) ϵ+ηlim(b)) a:R, a:A, b:C_{S}(R_{+}), \epsilon:R_{+}, \epsilon:A_{+}, \eta:R_{+} \eta:A_{+} \vdash \mu_{R, \mu_{A, C(S, R_{+})}(a, A_{+})}(a, b, \epsilon, \eta): (inj(a) \sim_{\epsilon} b_{\eta}) \to (inj(a) \sim_{\epsilon + \eta} lim(b))
a:C(S, R A +),b: R A,δ: R A +,ϵ: R A +μ C(S, R A +), R A(a,b,δ,ϵ):(a δ ϵinj(b))(lim(a) δ+ϵinj(b)) a:C(S, R_{+}), A_{+}), b:R, b:A, \delta:R_{+}, \delta:A_{+}, \epsilon:R_{+} \epsilon:A_{+} \vdash \mu_{C(S, R_{+}), A_{+}), R}(a, A}(a, b, \delta, \epsilon): (a_{\delta} \sim_{\epsilon} inj(b) ) \to (lim(a) \sim_{\delta + \epsilon} inj(b))
a:C(S, R A +),b:C(S, R A +),δ: R A +,ϵ: R A +,η:R +μ C(S, R A +),C(S, R A +)(a,b,δ,ϵ,η):(a δ ϵb η)(lim(a) δ+ϵ+ηlim(b)) a:C(S, R_{+}), A_{+}), b:C(S, R_{+}), A_{+}), \delta:R_{+}, \delta:A_{+}, \epsilon:R_{+}, \epsilon:A_{+}, \eta:R_{+} \vdash \mu_{C(S, R_{+}), A_{+}), C(S, R_{+})}(a, A_{+})}(a, b, \delta, \epsilon, \eta): (a_{\delta} \sim_{\epsilon} b_{\eta} ) \to (lim(a) \sim_{\delta + \epsilon + \eta} lim(b))

For two R A + R_{+} A_{+}-Cauchy structures SS and TT, a R A + R_{+} A_{+}-Cauchy structure homomorphism consists of

  • a function f:STf:S \to T

  • a dependent family of functions

    a:S,b:S,ϵ: R A +π(a,b,ϵ):(a Sϵb)(f(a) Tϵf(b)) a:S, b:S, \epsilon:R_{+} \epsilon:A_{+} \vdash \pi(a, b, \epsilon): (a \sim_{S\epsilon} b) \to (f(a) \sim_{T\epsilon} f(b))
  • a dependent family of types

    r: R Aι(r):f(inj S(r))=inj T(r) r:R r:A \vdash \iota(r): f(inj_S(r)) = inj_T(r)
  • a dependent family of types

    r:C(S, R A +)λ(r):f(lim S(r))=lim T(fr) r:C(S, R_{+}) A_{+}) \vdash \lambda(r): f(lim_S(r)) = lim_T(f \circ r)
  • a dependent family of types

    a:S,b:S,c: ϵ: R A +(a ϵb)η(a,b,c):f(eq S(a,b,c))=eq T(f(a),f(b),f(c)) a:S, b:S, c:\Vert \prod_{\epsilon:R_{+}} \prod_{\epsilon:A_{+}} (a \sim_{\epsilon} b) \Vert \vdash \eta(a, b, c): f(eq_S(a, b, c)) = eq_T(f(a), f(b), f(c))

See also

References

  • Auke B. Booij, Analysis in univalent type theory (pdf)

Revision on March 12, 2022 at 22:13:42 by Anonymous?. See the history of this page for a list of all contributions to it.