Homotopy Type Theory Cauchy structure > history (Rev #13, changes)

Showing changes from revision #12 to #13: Added | Removed | Changed

Contents

Whenever editing is allowed on the nLab again, this article should be ported over there.

Definition

In set theory

A LetCauchy structure\mathbb{Q} is be a the premetric rational space numbers and letSS with a function ratS +rat \in S^{\mathbb{Q}_{+}} and a function limS C(S)lim \in S^{C(S)} such that

aS.bS.((ϵ + .a{ ϵxb) |a0 = < b x ) } \forall \mathbb{Q}_{+} a \coloneqq \{x \in S.\forall \mathbb{Q} b \vert \in 0 S.((\forall \lt \epsilon x\} \in \mathbb{Q}_{+}.a \sim_\epsilon b) \implies a = b)
a.b.ϵ +.(|ab|<ϵrat(a) ϵrat(b))\forall a \in \mathbb{Q}.\forall b \in \mathbb{Q}.\forall \epsilon \in \mathbb{Q}_{+}.(\vert a - b \vert \lt \epsilon \implies rat(a) \sim_\epsilon rat(b))
a.bC(S).ϵ +.η +.(rat(a) ϵb(η)rat(a) ϵ+ηlim(b))\forall a \in \mathbb{Q}.\forall b \in C(S).\forall \epsilon \in \mathbb{Q}_{+}.\forall \eta \in \mathbb{Q}_{+}.(rat(a) \sim_\epsilon b(\eta) \implies rat(a) \sim_{\epsilon + \eta} lim(b))

be the set of positive rational numbers.

aC(S).b.ϵ +.δ +.(a(δ) ϵrat(b)lim(a) δ+ϵrat(b))\forall a \in C(S).\forall b \in \mathbb{Q}.\forall \epsilon \in \mathbb{Q}_{+}.\forall \delta \in \mathbb{Q}_{+}.(a(\delta) \sim_\epsilon rat(b) \implies lim(a) \sim_{\delta + \epsilon} rat(b))
aC(S).bC(S).ϵ +.δ +.η +.(a(δ) ϵb(η)lim(a) δ+ϵ+ηlim(b))\forall a \in C(S).\forall b \in C(S).\forall \epsilon \in \mathbb{Q}_{+}.\forall \delta \in \mathbb{Q}_{+}.\forall \eta \in \mathbb{Q}_{+}.(a(\delta) \sim_\epsilon b(\eta) \implies lim(a) \sim_{\delta + \epsilon + \eta} lim(b))

A Cauchy structure is a premetric space SS with a function ratS +rat \in S^{\mathbb{Q}_{+}} and a function limS C(S)lim \in S^{C(S)}, where C(S)C(S) is the set of Cauchy approximations in SS, such that

For two Cauchy structures SS and TT, a Cauchy structure homomorphism is a function fT Sf\in T^S such that

aS.bS.((ϵ +.a ϵb)a=b)\forall a \in S.\forall b \in S.((\forall \epsilon \in \mathbb{Q}_{+}.a \sim_\epsilon b) \implies a = b)
a.b.ϵ +.(|ab|<ϵrat(a) ϵrat(b))\forall a \in \mathbb{Q}.\forall b \in \mathbb{Q}.\forall \epsilon \in \mathbb{Q}_{+}.(\vert a - b \vert \lt \epsilon \implies rat(a) \sim_\epsilon rat(b))
a S.bC(S).ϵ +.η +.(rat(a) ϵb(η)rat(f(a) ϵϵ+η f lim(b)) \forall a \in S.\forall \mathbb{Q}.\forall b \in S.\forall C(S).\forall \epsilon \in \mathbb{Q}_{+}.(a \mathbb{Q}_{+}.\forall \sim_{\epsilon} \eta b) \in \to \mathbb{Q}_{+}.(rat(a) (f(a) \sim_\epsilon \sim_{\epsilon} b(\eta) f(b)) \implies rat(a) \sim_{\epsilon + \eta} lim(b))
r aC(S).b.fϵ +.δ +.(a(δ) ϵrat( r b)lim(a)= δ+ϵrat( r b)) \forall r\in a \mathbb{Q}.f(rat(r)) \in = C(S).\forall rat(r) b \in \mathbb{Q}.\forall \epsilon \in \mathbb{Q}_{+}.\forall \delta \in \mathbb{Q}_{+}.(a(\delta) \sim_\epsilon rat(b) \implies lim(a) \sim_{\delta + \epsilon} rat(b))
r aC(S).fbC( lim S).ϵ +.δ +.η +.( r a(δ) ϵb(η) =lim( f a )r δ+ϵ+ηlim(b)) \forall r\in a C(S).f(lim(r)) \in = C(S).\forall lim(f b \circ \in r) C(S).\forall \epsilon \in \mathbb{Q}_{+}.\forall \delta \in \mathbb{Q}_{+}.\forall \eta \in \mathbb{Q}_{+}.(a(\delta) \sim_\epsilon b(\eta) \implies lim(a) \sim_{\delta + \epsilon + \eta} lim(b))
aS.bS.(((ϵ +.a ϵb)a=b)((ϵ +.f(a) ϵf(b))f(a)=f(b))\forall a \in S.\forall b \in S.(((\forall \epsilon \in \mathbb{Q}_{+}.a \sim_\epsilon b) \implies a = b) \implies ((\forall \epsilon \in \mathbb{Q}_{+}.f(a) \sim_\epsilon f(b)) \implies f(a) = f(b))

For two Cauchy structures SS and TT, a Cauchy structure homomorphism is a function fT Sf\in T^S such that

aS.bS.ϵ +.(a ϵb)(f(a) ϵf(b))\forall a \in S.\forall b \in S.\forall \epsilon \in \mathbb{Q}_{+}.(a \sim_{\epsilon} b) \to (f(a) \sim_{\epsilon} f(b))
r.f(rat(r))=rat(r)\forall r\in \mathbb{Q}.f(rat(r)) = rat(r)
rC(S).f(lim(r))=lim(fr)\forall r\in C(S).f(lim(r)) = lim(f \circ r)
aS.bS.(((ϵ +.a ϵb)a=b)((ϵ +.f(a) ϵf(b))f(a)=f(b))\forall a \in S.\forall b \in S.(((\forall \epsilon \in \mathbb{Q}_{+}.a \sim_\epsilon b) \implies a = b) \implies ((\forall \epsilon \in \mathbb{Q}_{+}.f(a) \sim_\epsilon f(b)) \implies f(a) = f(b))

The category of Cauchy structures is a category CauchyStrCauchyStr whose objects Ob(CauchyStr)Ob(CauchyStr) are Cauchy structures and whose morphisms Mor(A,B)Mor(A, B), for objects AOb(CauchyStr)A \in Ob(CauchyStr) and BOb(CauchyStr)B \in Ob(CauchyStr), are Cauchy structure homomorphisms. The initial object in the category of Cauchy structures is the HoTT book real numbers.

In homotopy type theory

Let R R \mathbb{Q} be a dense integral subdomain of therational numbers and let\mathbb{Q} and let R +R_{+} be the positive terms of RR.

An R +R_{+}-Cauchy structure is a R +R_{+}-premetric space SS with

+ x:0<x\mathbb{Q}_{+} \coloneqq \sum_{x:\mathbb{Q}} 0 \lt x
  • a function inj:RSinj: R \to S

  • a function lim:C(S,R +)Slim: C(S, R_{+}) \to S, where C(S,R +)C(S, R_{+}) is the type of R +R_{+}-Cauchy approximations in SS

  • dependent families of terms

be the positive rational numbers.

a:S,b:Seq(a,b): ϵ:R +(a ϵb)(a= Sb)a:S, b:S \vdash eq(a, b): \Vert \prod_{\epsilon:R_{+}} (a \sim_{\epsilon} b) \Vert \to (a =_S b)

A Cauchy structure is a premetric space SS with

a:R,b:R,ϵ:R +μ R,R(a,b,ϵ):(|ab|<ϵ)(inj(a) ϵinj(b))a:R, b:R, \epsilon:R_{+} \vdash \mu_{R, R}(a, b, \epsilon): (\vert a - b \vert \lt \epsilon) \to (inj(a) \sim_{\epsilon} inj(b))
a:R,b:C S(R +),ϵ:R +,η:R +μ R,C(S,R +)(a,b,ϵ,η):(inj(a) ϵb η)(inj(a) ϵ+ηlim(b))a:R, b:C_{S}(R_{+}), \epsilon:R_{+}, \eta:R_{+} \vdash \mu_{R, C(S, R_{+})}(a, b, \epsilon, \eta): (inj(a) \sim_{\epsilon} b_{\eta}) \to (inj(a) \sim_{\epsilon + \eta} lim(b))
  • a function inj:Sinj: \mathbb{Q} \to S

  • a function lim:C(S)Slim: C(S) \to S, where C(S)C(S) is the type of R +R_{+}-Cauchy approximations in SS

  • dependent families of terms

a:C(S,R +),b:R,δ:R +,ϵ:R +μ C(S,R +),R(a,b,δ,ϵ):(a δ ϵinj(b))(lim(a) δ+ϵinj(b))a:C(S, R_{+}), b:R, \delta:R_{+}, \epsilon:R_{+} \vdash \mu_{C(S, R_{+}), R}(a, b, \delta, \epsilon): (a_{\delta} \sim_{\epsilon} inj(b) ) \to (lim(a) \sim_{\delta + \epsilon} inj(b))
a:C(S,R +),b:C(S,R +),δ:R +,ϵ:R +,η:R +μ C(S,R +),C(S,R +)eq(a,b,δ,ϵ,η): ϵ: +(a δa ϵb ηb)(lim(a)= S δ+ϵ+ηlim(b)) a:C(S, a:S, R_{+}), b:S b:C(S, R_{+}), \delta:R_{+}, \epsilon:R_{+}, \eta:R_{+} \vdash \mu_{C(S, eq(a, R_{+}), b): C(S, \Vert R_{+})}(a, \prod_{\epsilon:\mathbb{Q}_{+}} b, (a \delta, \epsilon, \eta): (a_{\delta} \sim_{\epsilon} b_{\eta} b) ) \Vert \to (lim(a) (a \sim_{\delta =_S + b) \epsilon + \eta} lim(b))
a:,b:,ϵ: +μ ,(a,b,ϵ):(|ab|<ϵ)(inj(a) ϵinj(b))a:\mathbb{Q}, b:\mathbb{Q}, \epsilon:\mathbb{Q}_{+} \vdash \mu_{\mathbb{Q}, \mathbb{Q}}(a, b, \epsilon): (\vert a - b \vert \lt \epsilon) \to (inj(a) \sim_{\epsilon} inj(b))

For two R +R_{+}-Cauchy structures SS and TT, a R +R_{+}-Cauchy structure homomorphism consists of

a:,b:C(S),ϵ: +,η: +μ ,C(S)(a,b,ϵ,η):(inj(a) ϵb η)(inj(a) ϵ+ηlim(b))a:\mathbb{Q}, b:C(S), \epsilon:\mathbb{Q}_{+}, \eta:\mathbb{Q}_{+} \vdash \mu_{\mathbb{Q}, C(S)}(a, b, \epsilon, \eta): (inj(a) \sim_{\epsilon} b_{\eta}) \to (inj(a) \sim_{\epsilon + \eta} lim(b))
a:C(S),b:,δ: +,ϵ: +μ C(S),(a,b,δ,ϵ):(a δ ϵinj(b))(lim(a) δ+ϵinj(b))a:C(S), b:\mathbb{Q}, \delta:\mathbb{Q}_{+}, \epsilon:\mathbb{Q}_{+} \vdash \mu_{C(S), \mathbb{Q}}(a, b, \delta, \epsilon): (a_{\delta} \sim_{\epsilon} inj(b) ) \to (lim(a) \sim_{\delta + \epsilon} inj(b))
  • a function f:STf:S \to T

  • a dependent family of functions

    a:S,b:S,ϵ:R +π(a,b,ϵ):(a Sϵb)(f(a) Tϵf(b))a:S, b:S, \epsilon:R_{+} \vdash \pi(a, b, \epsilon): (a \sim_{S\epsilon} b) \to (f(a) \sim_{T\epsilon} f(b))
  • a dependent family of types

    r:Rι(r):f(inj S(r))=inj T(r)r:R \vdash \iota(r): f(inj_S(r)) = inj_T(r)
  • a dependent family of types

    r:C(S,R +)λ(r):f(lim S(r))=lim T(fr)r:C(S, R_{+}) \vdash \lambda(r): f(lim_S(r)) = lim_T(f \circ r)
  • a dependent family of types

    a:S,b:S,c: ϵ:R +(a ϵb)η(a,b,c):f(eq S(a,b,c))=eq T(f(a),f(b),f(c))a:S, b:S, c:\Vert \prod_{\epsilon:R_{+}} (a \sim_{\epsilon} b) \Vert \vdash \eta(a, b, c): f(eq_S(a, b, c)) = eq_T(f(a), f(b), f(c))
a:C(S),b:C(S),δ: +,ϵ: +,η: +μ C(S),C(S)(a,b,δ,ϵ,η):(a δ ϵb η)(lim(a) δ+ϵ+ηlim(b))a:C(S), b:C(S), \delta:\mathbb{Q}_{+}, \epsilon:\mathbb{Q}_{+}, \eta:\mathbb{Q}_{+} \vdash \mu_{C(S), C(S)}(a, b, \delta, \epsilon, \eta): (a_{\delta} \sim_{\epsilon} b_{\eta} ) \to (lim(a) \sim_{\delta + \epsilon + \eta} lim(b))

For two Cauchy structures SS and TT, a Cauchy structure homomorphism consists of

  • a function f:STf:S \to T

  • a dependent family of functions

    a:S,b:S,ϵ: +π(a,b,ϵ):(a Sϵb)(f(a) Tϵf(b))a:S, b:S, \epsilon:\mathbb{Q}_{+} \vdash \pi(a, b, \epsilon): (a \sim_{S\epsilon} b) \to (f(a) \sim_{T\epsilon} f(b))
  • a dependent family of types

    r:ι(r):f(inj S(r))=inj T(r)r:\mathbb{Q} \vdash \iota(r): f(inj_S(r)) = inj_T(r)
  • a dependent family of types

    r:C(S)λ(r):f(lim S(r))=lim T(fr)r:C(S) \vdash \lambda(r): f(lim_S(r)) = lim_T(f \circ r)
  • a dependent family of types

    a:S,b:S,c: ϵ: +(a ϵb)η(a,b,c):f(eq S(a,b,c))=eq T(f(a),f(b),f(c))a:S, b:S, c:\Vert \prod_{\epsilon:\mathbb{Q}_{+}} (a \sim_{\epsilon} b) \Vert \vdash \eta(a, b, c): f(eq_S(a, b, c)) = eq_T(f(a), f(b), f(c))

See also

References

  • Auke B. Booij, Analysis in univalent type theory (pdf)

Revision on April 14, 2022 at 00:18:05 by Anonymous?. See the history of this page for a list of all contributions to it.