Homotopy Type Theory Cauchy net > history (Rev #9, changes)

Showing changes from revision #8 to #9: Added | Removed | Changed

Contents

Definition

In premetric spaces

Let T R T R be a dense integral subdomain of the directed rational type numbers , and let S S \mathbb{Q} be and a letTR + T R_{+} - be the positive terms ofRR. Let SS be an R +R_{+}-premetric space. Given a directed type II, a net x:ISx: I \to S is a Cauchy net if

x:ISc(x): ϵ:TR + N:I i:I j:I(iN)×(jN)×(x i ϵx j) x:I \to S \vdash c(x):\prod_{\epsilon:T} c(x):\prod_{\epsilon:R_{+}} \Vert \sum_{N:I} \prod_{i:I} \prod_{j:I} (i \geq N) \times (j \geq N) \times (x_i \sim_{\epsilon} x_j) \Vert

Cauchy approximations

Let A R A R be a dense integral subdomain of the dense rational numbers Archimedean ordered abelian group\mathbb{Q} with and a let point1R +:A 1:A R_{+} and be a the term positive terms of ζ R:0<1 \zeta: R 0 \lt 1. Let A + a:A(0<a)A_{+} \coloneqq \sum_{a:A} (0 \lt a) be the positive cone? of AA.

A net x: A R +S x: A_{+} R_{+} \to S is a A R + A_{+} R_{+}-Cauchy approximation if

x:R +Sc(x): δ:R + η:R +x δ δ+ηx ηx:R_{+} \to S \vdash c(x):\prod_{\delta:R_{+}} \prod_{\eta:R_{+}} x_\delta \sim_{\delta + \eta} x_\eta

Every A R + A_{+} R_{+}-Cauchy approximation is a Cauchy net indexed by A R + A_{+} R_{+}. This is because A R + A_{+} R_{+} is a strictly ordered type, and thus a directed type and a strictly codirected type, with N: A R + N:A_{+} N:R_{+} defined as NδηN \coloneqq \delta \otimes \eta for δ: A R + \delta:A_{+} \delta:R_{+} and η: A R + \eta:A_{+} \eta:R_{+}. ϵ:R +\epsilon:R_{+} is defined as ϵ+δ+η\epsilon + \delta + \eta.

In Cauchy spaces

Cauchy sequences

A Cauchy sequence is a Cauchy net whose index type is the natural numbers \mathbb{N}.

See also

Revision on March 31, 2022 at 03:01:28 by Anonymous?. See the history of this page for a list of all contributions to it.