Homotopy Type Theory Cauchy approximation > history (Rev #12, changes)

Showing changes from revision #11 to #12: Added | Removed | Changed

Contents

Whenever editing is allowed on the nLab again, this article should be ported over there.

Definition

In set theory

A LetCauchy approximation\mathbb{Q} in be a the premetric rational space numbers and letSS is a function xS +x \in S^{\mathbb{Q}_{+}}, where S +S^{\mathbb{Q}_{+}} is the set of functions with domain +\mathbb{Q}_{+} and codomain SS, such that

δ + . { η x + . |0<x ( }δ) δ+ηx(η) \forall \mathbb{Q}_{+} \delta \coloneqq \{x \in \mathbb{Q}_{+}.\forall \mathbb{Q} \eta \vert \in 0 \mathbb{Q}_{+}.x(\delta) \lt \sim_{\delta x\} + \eta} x(\eta)

be the set of positive rational numbers. Let SS be a premetric space. A Cauchy approximation is a function xS +x \in S^{\mathbb{Q}_{+}}, where S +S^{\mathbb{Q}_{+}} is the set of functions with domain +\mathbb{Q}_{+} and codomain SS, such that

δ +.η +.x(δ) δ+ηx(η)\forall \delta \in \mathbb{Q}_{+}.\forall \eta \in \mathbb{Q}_{+}.x(\delta) \sim_{\delta + \eta} x(\eta)

The set of all Cauchy approximations is defined as

C(S){xS +|δ +.η +.x(δ) δ+ηx(η)}C(S) \coloneqq \{x \in S^{\mathbb{Q}_{+}} \vert \forall \delta \in \mathbb{Q}_{+}.\forall \eta \in \mathbb{Q}_{+}.x(\delta) \sim_{\delta + \eta} x(\eta)\}

In homotopy type theory

Let R R \mathbb{Q} be a dense integral subdomain of therational numbers and let\mathbb{Q} and let R +R_{+} be the positive terms of RR.

Let SS be a R +R_{+}-premetric space. We define the predicate

+ x:0<x\mathbb{Q}_{+} \coloneqq \sum_{x:\mathbb{Q}} 0 \lt x
isCauchyApproximation(x) δ:R + η:R +x δ δ+ηx ηisCauchyApproximation(x) \coloneqq \prod_{\delta:R_{+}} \prod_{\eta:R_{+}} x_\delta \sim_{\delta + \eta} x_\eta

be the positive rational numbers. Let SS be a premetric space. We define the predicate

xx is a R +R_{+}-Cauchy approximation if

isCauchyApproximation(x) δ: + η: +x δ δ+ηx ηisCauchyApproximation(x) \coloneqq \prod_{\delta:\mathbb{Q}_{+}} \prod_{\eta:\mathbb{Q}_{+}} x_\delta \sim_{\delta + \eta} x_\eta
x:R +Sc(x):isCauchyApproximation(x)x:R_{+} \to S \vdash c(x): isCauchyApproximation(x)

xx is a Cauchy approximation if

The type of R +R_{+}-Cauchy approximations in SS is defined as

x: +Sc(x):isCauchyApproximation(x)x:\mathbb{Q}_{+} \to S \vdash c(x): isCauchyApproximation(x)
C(S,R +) x:R +SisCauchyApproximation(x)C(S, R_{+}) \coloneqq \sum_{x:R_{+} \to S} isCauchyApproximation(x)

The type of Cauchy approximations in SS is defined as

C(S) x: +SisCauchyApproximation(x)C(S) \coloneqq \sum_{x:\mathbb{Q}_{+} \to S} isCauchyApproximation(x)

Properties

Every Cauchy approximation is aR +R_{+}-Cauchy approximation is a Cauchy net indexed by R + R_{+} \mathbb{Q}_{+}. This is because R + R_{+} \mathbb{Q}_{+} is a strictly ordered type, and thus a directed type and a strictly codirected type, with N: R + N:R_{+} N:\mathbb{Q}_{+} defined as NδηN \coloneqq \delta \otimes \eta for δ: R + \delta:R_{+} \delta:\mathbb{Q}_{+} and η: R + \eta:R_{+} \eta:\mathbb{Q}_{+}. ϵ: R + \epsilon:R_{+} \epsilon:\mathbb{Q}_{+} is defined as ϵδ+η\epsilon \coloneqq \delta + \eta.

Thus, there is a family of dependent terms

x: R +Sn(x):isCauchyApproximation(x)isCauchyNet(x) x:R_{+} x:\mathbb{Q}_{+} \to S \vdash n(x): isCauchyApproximation(x) \to isCauchyNet(x)

An A Cauchy approximation is the compositionR +xM R_{+} x \circ M -Cauchy approximation of is a the net compositionxM x \circ M of and a an netxx and an R +R_{+}-modulus of Cauchy convergence MM.

See also

References

Revision on April 14, 2022 at 00:17:37 by Anonymous?. See the history of this page for a list of all contributions to it.