Schreiber Knots for quantum computation from defect branes

A talk that I will have given:



Abstract. Already 25 years ago, Kitaev proposed that intrinsically fault-tolerant quantum computation should be possible by knotting the worldlines of defect points in effectively 2-dimensional quantum materials akin to graphene. Meanwhile, there have been striking advances (a) in the theoretical understanding of such quantum materials, in terms of topological K-theory and (b) in the practical construction of toy quantum computers – but the “topological quantum gates” proposed by Kitaev have remained somewhat elusive, both practically but also theoretically. Recently we have shown that a previously neglected sector of topological K-theory in its fully-fledged twisted equivariant differential refinement does reflect exactly those topological quantum gates that are thought to be practically realizable – namely the “ SU ( 2 ) SU(2) -anyon braid quantum gates”. This insight was drawn from the study of “defect branes” in string theory and points to a non-perturbative enhancement of what is known as "holographic" condensed matter theory. I will give a gentle exposition and motivation of these results.


Based on these articles:


Related talks:




Last revised on September 5, 2022 at 14:42:29. See the history of this page for a list of all contributions to it.