Cohomological quantization of boundary
prequantum field theory

Joost Nuiten

Universiteit Utrecht
August 28, 2013



Functorial TQFT

A TQFT is a local assignment of linear propagators to cobordisms

States(S* ][ S?)
—> lPropagate

States (51)

More precisely: a functor

n-category of cobordisms —— some ‘linear’ n-category



Topological QFTs from quantization

Prequantum field theory:

> a field ¢ on
> a local action functional S[¢] = [ (d¢,¢) + (¢, [d,d]) + ...
Can be described in (higher) differential geometry.
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Topological QFTs from quantization

Prequantum field theory:

> a field ¢ on
> a local action functional S[¢] = [ (d¢,¢) + (¢, [d,d]) + ...
Can be described in (higher) differential geometry.

Quantization:
> path integral [[Dg]e”!9]

Idea: path integral = pushforward/fiber integration in cohomology

* f *—dim
Hir(M) —~ Hde (M)(*) =C

f(x) - vol —— [}, f(x) - vol



Quantizing non-topological theories.

Idea: boundary to TFT quantizes to non-topological field theory.
Holographic principle:

partition function/correlator

of boundary theory A state of bulk TFT

boundary QFT o element of bulk TFT
evaluated on X evaluated on X
Example

» WZW-model at boundary of Chern-Simons theory.

» Poisson manifold at boundary of Poisson sigma model.
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pQFT: higher geometry

Main properties of fields:
1. Fields are smooth/geometric objects
2. Gauge principle:

» different field configurations can be gauge equivalent
» different gauge transformations can be gauge equivalent

Need for

smooth homotopy types
= smooth oco-groupoids
smooth oo-stacks

smooth spaces
+ gauge equivalences

These form an oo-topos H = SmoothooGpd.



pQFT: field trajectories

A cobordism

Zleft( ) )Zright

gives a correspondence in H

Fields(Zje;) < Fields(¥) ——— Fields(Zright)



pQFT: field trajectories

A cobordism between cobordisms

Ztop,left( thp >Ztop,right
Z]eftc h )Zright

J ] J

Zbottom,leftc—> zbottom <—)Zbottom,righ‘c
gives a higher correspondence in H

Fields(X¢op,eft) <—— Fields(Xiop) — Fields(Xiop,right)

f f !

Fields(Xjef;) < Fields(X) ———— Fields(X ight)

! ! :

Fields(zbottom,left) < Fields(zbottom) - Fields(zbottom,right)



pPQFT: locality

Consider the (0o, n)-categories:

» Bord, (framed) cobordisms of dimension < n.
» Corr,(H) n-fold corresponces of smooth stacks.
Definition

A n-dimensional prequantum field is a monoidal (oo, n)-functor

Bord, Fields_ Corrn(H)

Functoriality = locality of the field.



pQFT: fields

For topological field theories:

Proposition

Any prequantum field is defined by a classifying stack Fields as
T s Fields(T) = Maps(n(Z), Fields)

These form the phase spaces of the pQFT.

Example

> sigma model: Fields = spacetime X.

» gauge theory: Fields = B G.onn stack of G-principal connections
{G—bundles + connection over Z} ~ {maps > — BGCOHH}

Then Fields(X) = FlatGBund(X) is the phase space of CS
theory.



pQFT: local action functional
> Y closed, n-dimensional, then
Fields(X) —— U(1)
¢ ————=exp(iS[¢])
» Locality: exp(iS[¢]) by integrating ‘higher phases’ over ¥.

Such higher phases sit in higher circle groups B"U(1).
Definition
An (exponentiated) local action functional/Lagrangian is a map

Fields X B"U(1)
Example
3D Chern-Simons theory: BGeonn —2 B3U(1)



pQFT: local action functional

For ¥ closed, n-dimensional (oriented):

s

Maps(I'I(Z), Fields) X, Maps(l_l(Z), B”U(l)) —T.uQ)

More general: for a cobordism

Fields(X)

L

Fields(Zin) t Fields(Zout)

out
BU(1)
a gauge equivalence between prequantum circle bundles.

More general: higher gauge equivalence between circle n-bundles.



pQFT: local action functional
Corr,(H /gny(1)) = n-fold correspondences in slice H gny(1)-
Definition
A functor

Corrn(H/BnU(l))
exp(is)x o7 l

Bord,,rrr—,> Corrp(H)

Fields

defines an n-dimensional topological prequantum field theory.

Proposition

Any such functor is obtained from a local action functional
Fields 5 B"U(1) via

exp(iS[¢]) = /Z X(9).



pQFT: boundary theories
Bord? = cobordisms with constrained boundary
Definition

An n-dimensional boundary pQFT is a monoidal (oo, n)-functor

Bord2 — Corrp, (H/BnU(l))

Proposition (Fiorenza-Valentino)
A boundary pQFT is classified by a diagram

Fields®

I

/.
\\/ h

B"U(1



Summarizing:
Two sources of correspondences in H gny(1):
1. As trajectories:

Fields(X)
/ \

Fields(Ti) \ Fields(Tout)
\ /

B"U(1)
2. Classifying boundary theories:

Fields?

* / \Fields
W

B"U(1)



Path integral quantization

Idea in 1d:
» map U(1) — GL1(C).
» Fields — BU(1) determines line bundle L.

» quantum state = section of L
> propagators by addition of phases in C.

For higher dimensions: replace C by higher (smooth) ring.



Linearization: rings and cohomology
‘Higher ring’ = (smooth) E ring spectrum
Cohomology

» X a smooth stack

» R a smooth E ring

The R-cohomology of X is

R*(X) := Maps(X, R)

Example
For X a manifold, R an ordinary geometrically discrete ring

R*(X) = {R-cochains in X}



Linearization: twisted cohomology

Let
» R a (smooth) E. ring spectrum.
» GL;i(R) its group of units in H.
A map
X 4(1> BGLl(R)

classifies a (smooth) bundle
L—=X

with fiber R.
Definition (Ando-Blumberg-Gepner-Hopkins-Rezk)

The a-twisted R-cohomology spectrum of X is

R*+a(X) = MapSthn(L, R) = r(X, LV)



Linearization: quantum states

A group homomorphism
B"1U(1) — GLi(R)
gives a universal twist of R-cohomology
B"U(1) — BGL1(R).
Then Fields & B"U(1) gives
R**X(Fields) = I'(Fields, L")

the space of ‘higher wave functions/quantum states’.



Linearized trajectories
A trajectory

Fields(X)
Fields(Zin)& Fxow  Fields(Tou)
Xin %

B"U(1)

gives rise to
R*Xin (Fieldsyy ) J2% R+ Xou (Fields(%)) <= R*+¥eu (Fields(Tout))

Quantization: turn this into a propagator

no Jzx
—r

R*+Xin (Fieldsy, ) R*+xout (Fields(Lout )



Linearized boundaries

A boundary 5
Fields
« =L |rx  Fields
\ .
B"U(1)

gives rise to ¢ i -
R = R**"X(Fields?) <— R**X(Fields)

Quantization: turn this into a state
R "), R+X(Fields).

This is the holographic quantization of the boundary theory.



Quantization

Idea: fiber integration by duality

For M a closed manifold:

H*(M) fi H*—dim(M)(*)

o= -]

H*fdim(M)(M) ?‘ *fdim(l\/l)(*)

In general:
» identify R**X(X) = R*TX(X)V with its dual (orientation).
> use the dual map to form the pushforward.

» do this fiberwise.

Constraints: compactness + orientability



Example: quantization of Poisson manifolds

Math | Physics

symplectic manifold mechanical system.

Poisson manifold | foliation of mechanical systems.
Both describe a non-topological particle.

Holographic quantization: quantize them as the boundary of a
2d topological pQFT.

Analogue in geometric quantization of

deformation quantization perturbative quantization

of Poisson manifold ~ of Poisson sigma model

by Kontsevich and Cattaneo-Felder.



Example: Poisson sigma model

exponentiate

Poisson manifold (M, 7) SymplGpd(M, ) € H

Under suitable conditions:
» SymplGpd(M, ) a Lie groupoid.
» with multiplicative prequantum line bundle on space of
morphisms.
> x : SymplGpd(M, ) — B2U(1) describes Poisson
sigma-model.
M describes a boundary of the 2d Poisson sigma model.

/g

| X Sympled(l\/I )

\



K-theory for differentiable stacks

To quantize: map higher group BU(1) to units of smooth ring.

Expected good choice: smooth K-theory KU.



K-theory for differentiable stacks

To quantize: map higher group BU(1) to units of smooth ring.

Topological approximation:

Theorem (Landsman, Joachim-Stolz, Tu e.a., ...)
There is a lax monoidal functor

DiffStack?iy, 1) 5 KKK — ho(KUMod)

taking a differentiable stack to the K-theory spectrum of its
twisted convolution algebra.

This gives:
> twisted topological K-theory.

> twisted G-equivariant K-theory for compact G.



Example: Poisson sigma model

If M -5 SymplGpd(M, «) is K-oriented, we obtain

i(§) € K*™X(SymplGpd(M, ))

Interpret this as
> twisted vector bundle over leaf space SymplGpd(M, )
» with fibers the quantizations of the symplectic leaves.
This combines the
» K-theoretic quantization of symplectic manifolds
> quantization of symplectic groupoids (Hawkins)

to complete Weinstein's quantization programme for Poisson
manifolds using their symplectic groupoid.



Example: symplectic manifold

If (M, 7) = (M,w™!) symplectic, then

X SymplGpd(M,w™1) ~ *
\ /
B"U(1)

describes the prequantum circle bundle L over M.
This produces the traditional geometric quantization of (M, w):

> A spin®-structure on M defines an orientation.

> i)(&) as index of the spin© Dirac operator, coupled to L.

» ii(€) € KO(x) gives the virtual space of states.



Example: Lie-Poisson manifold

» G a compact, simply connected Lie group.

> g* carries a linear Poisson structure 7y je.

v

SymplGpd(g*, mLie) ~ g% // G under the coadjoint action.

v

The map g* — g*//G has natural K-orientation.

When restricted to suitable defects (given by coadjoint orbits), this
produces Kirillov's orbit method.

Interpretation the ‘inverse orbit method theorem’ of
Freed-Hopkins-Teleman as defects of 2d Poisson sigma model.



Outlook

More examples of holographic quantization:
» D-brane charges in string theory (Brodzki ea).
» Witten genus quantizing the heterotic string.

> ‘M-brane charge' quantizing string at end of 2-brane.

Examples of cohomological quantization of TFTs:
» string topology operations (Chas-Sullivan, Godin, ...).
» CS-theory as '2-1'-theory (Freed-Hopkins-Teleman).

Requires functoriality + a consistent choice of orientation.

Next step: use pull-push quantization to produce a TQFT

Bord, — (:’?Mod)D ’
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