Twisted, Equivariant, Differential (TED) K-Theory via Diffeological Stacks

Urs Schreiber on joint work with Hisham Sati

جامعـة نيويورك أبـوظـي NYU ABU DHABI NYU AD Science Division, Program of Mathematics

& Center for Quantum and Topological Systems New York University, Abu Dhabi

talk via:

Global Diffeology Seminar @ DIFFEOLOGY.NET

04 Nov 2022

slides and pointers at: ncatlab.org/schreiber/show/TED+cohomology

Motivation:

Motivation: understand the real world

Tool: Mathematical foundations.

physically:	dynamical	quantum	gauge principle

physically:	dynamical	quantum	gauge principle
traditionally:	geometric	triangulated	∞-stacks

physically:	dynamical	quantum	gauge principle
traditionally:	geometric	triangulated	∞-stacks
alg-topologically:	Twisted Equivariant Differential	homology	theories

physically:	dynamical	quantum	gauge principle
traditionally:	geometric	triangulated	∞-stacks
alg-topologically:	Twisted Equivariant Differential	homology	theories
categorically:	cohesive	tangent	∞-toposes

physically:	dynamical	quantum	gauge principle
traditionally:	geometric	triangulated	∞-stacks
alg-topologically:	Twisted Equivariant Differential	homology	theories
categorically:	cohesive	tangent	∞-toposes
logically:	modal	linear	homotopy types

physically:	dynamical	quantum	gauge principle
traditionally:	geometric	triangulated	∞-stacks
alg-topologically:	Twisted Equivariant Differential	homology	theories
categorically:	cohesive	tangent	∞-toposes
logically:	modal	linear	homotopy types

Tool: Mathematical foundations. What's the math core of physics?

physically:	dynamical	quantum	gauge principle
traditionally:	geometric	triangulated	∞-stacks
alg-topologically:	Twisted Equivariant Differential	homology	theories
categorically:	cohesive	tangent	∞-toposes
logically:	modal	linear	homotopy types

Application: What's the theory of *anyons*, really?

Tool: Mathematical foundations. What's the math core of physics?

physically:	dynamical	quantum	gauge principle
traditionally:	geometric	triangulated	∞-stacks
alg-topologically:	Twisted Equivariant Differential	homology	theories
categorically:	cohesive	tangent	∞-toposes
logically:	modal	linear	homotopy types

Application: What's the theory of *anyons*, really? What really is a topological quantum computer?

Figure 1 – Adiabatic braid quantum gate. Schematically indicated is the unitary transformation induced on the topologically ordered ground state (as discussed below in §3.3) of an effectively 2-dimensional topological semi-metal (as in §3.1) under adiabatic braiding (Rem. 1.1) of nodal points in the Brillouin torus (Rem. 3.9).

Tool: Mathematical foundations. What's the math core of physics?

physically:	dynamical	quantum	gauge principle
traditionally:	geometric	triangulated	∞-stacks
alg-topologically:	Twisted Equivariant Differential	homology	theories
categorically:	cohesive	tangent	∞-toposes
logically:	modal	linear	homotopy types

Application: What's the theory of *anyons*, really? What really is a topological quantum computer?

Tool: Mathematical foundations. What's the math core of physics?

physically:	dynamical	quantum	gauge principle
traditionally:	geometric	triangulated	∞-stacks
alg-topologically:	Twisted Equivariant Differential	homology	theories
categorically:	cohesive	tangent	∞-toposes
logically:	modal	linear	homotopy types

Application: What's the theory of *anyons*, really? What really is a topological quantum computer?

TED K-cohomology (Sati.-S. (2022)) f configuration space of configuration spaces

anyonic defect branes

Tool: Mathematical foundations. What's the math core of physics?

physically:	dynamical	quantum	gauge principle
traditionally:	geometric	triangulated	∞-stacks
alg-topologically:	Twisted Equivariant Differential	homology	theories
categorically:	cohesive	tangent	∞-toposes
logically:	modal	linear	homotopy types

Application: What's the theory of *anyons*, really? What really is a topological quantum computer?

Tool: Mathematical foundations. What's the math core of physics?

physically:	dynamical	quantum	gauge principle
traditionally:	geometric	triangulated	∞-stacks
alg-topologically:	Twisted Equivariant Differential	homology	theories
categorically:	cohesive	tangent	∞-toposes
logically:	modal	linear	homotopy types

Application: What's the theory of *anyons*, really? What really is a topological quantum computer?

- 0 Cohesive ∞-Topoi
- I Equivariant ∞-Bundles
- II TED-K-Theory
- III Anyonic Defect Branes
- IV Quantum Computation

0 – Cohesive ∞ -Topoi \leftarrow toposophists start here

I – Equivariant ∞-Bundles

- II TED-K-Theory
- III Anyonic Defect Branes
- IV Quantum Computation

- 0 Cohesive ∞-Topoi
- I Equivariant ∞ -Bundles \leftarrow categorists start here
- II TED-K-Theory
- III Anyonic Defect Branes
- IV Quantum Computation

- 0 Cohesive ∞-Topoi
- I Equivariant ∞-Bundles
- II TED-K-Theory \leftarrow cohomologists start here
- III Anyonic Defect Branes
- IV Quantum Computation

- 0 Cohesive ∞-Topoi
- I Equivariant ∞-Bundles
- II TED-K-Theory
- III Anyonic Defect Branes ← physicists start here
- IV Quantum Computation

- 0 Cohesive ∞-Topoi
- I Equivariant ∞-Bundles
- II TED-K-Theory
- III Anyonic Defect Branes
- IV Quantum Computation ← computists start here

0 – Cohesive ∞-Topoi

I – Equivariant ∞-Bundles

- II TED-K-Theory
- III Anyonic Defect Branes
- IV Quantum Computation

This part is a lightning indication of how diffeological spaces fit into the scheme of things,

following:

Equivariant Principal ∞*-bundles* [arXiv:2112.13654] Proper Orbifold Cohomology [arXiv:2008.01101] Diff. Cohomology in a Cohesive ∞ -Topos [arXiv:1310.7930]

A *diffeology* on a set X is

A *diffeology* on a set *X* is

(1.) a subfunctor Plots(-,X)

of the external Yoneda embedding of X over smooth Cartesian spaces:

A *diffeology* on a set X is
(1.) a subfunctor Plots(-,X)
of the external Yoneda embedding of X over smooth Cartesian spaces:

A *diffeology* on a set X is

(1.) a subfunctor Plots(-,X)

of the external Yoneda embedding of X over smooth Cartesian spaces:

(2.) wich satisfies the sheaf property wrt open covers.

A *diffeology* on a set X is

(1.) a subfunctor Plots(-,X)

of the external Yoneda embedding of X over smooth Cartesian spaces:

(2.) wich satisfies the sheaf property wrt open covers.

A *diffeology* on a set X is

(1.) a subfunctor Plots(-,X)

of the external Yoneda embedding of X over smooth Cartesian spaces:

(2.) wich satisfies the sheaf property wrt open covers.

In short: Diffeological spaces are the concrete objects in topos of sheaves on CartSp:

A *diffeology* on a set X is

(1.) a subfunctor Plots(-,X)

of the external Yoneda embedding of X over smooth Cartesian spaces:

(2.) wich satisfies the sheaf property wrt open covers.

In short: Diffeological spaces are the concrete objects in topos of sheaves on CartSp: $\begin{array}{c} category \ of \\ diffeology \end{array}$ DiffSp $\xrightarrow{concrete}$ Sh(CartSp) =: SmthSet $\begin{array}{c} topos \ of \\ smooth \ sets \end{array}$ Even if one is interested just in diffeological spaces

In short: Diffeological spaces are the concrete objects in topos of sheaves on CartSp: $\begin{array}{c} category \ of \\ diffeology \end{array}$ DiffSp $\xrightarrow{concrete}$ Sh(CartSp) =: SmthSet $\begin{array}{c} topos \ of \\ smooth \ sets \end{array}$ Even if one is interested just in diffeological spaces it is often useful to step into the larger world of the topos of smooth sets.

In short: Diffeological spaces are the concrete objects in topos of sheaves on CartSp: $\begin{array}{c} category \ of \\ diffeology \end{array}$ DiffSp $\xrightarrow{concrete}$ Sh(CartSp) =: SmthSet $\begin{array}{c} topos \ of \\ smooth \ sets \end{array}$

In short: Diffeological spaces are the concrete objects in topos of sheaves on CartSp: $\begin{array}{c} category \ of \\ diffeology \end{array}$ DiffSp $\xrightarrow{concrete}$ Sh(CartSp) =: SmthSet $\begin{array}{c} topos \ of \\ smooth \ sets \end{array}$

In short: Diffeological spaces are the concrete objects in topos of sheaves on CartSp: $\begin{array}{c} category \ of \\ diffeology \end{array}$ $\begin{array}{c} DiffSp \xrightarrow{concrete} \\ Sh(CartSp) =: \\ SmthSet \\ \end{array} \begin{array}{c} topos \ of \\ smooth \ sets \end{array}$

Example. The sheaf of differential *n*-forms

is not a diffeological space for $n \ge 1$. but is the *smooth moduli space* for differential forms on diffeological spaces:

In short: Diffeological spaces are the concrete objects in topos of sheaves on CartSp: $\begin{array}{c} category \ of \\ diffeology \end{array}$ DiffSp $\xrightarrow{concrete}$ Sh(CartSp) =: SmthSet $\begin{array}{c} topos \ of \\ smooth \ sets \end{array}$

Example. The sheaf of differential *n*-forms

is not a diffeological space for $n \ge 1$. but is the *smooth moduli space* for differential forms on diffeological spaces:

$$X \in \text{DiffSp} \Rightarrow \Omega^n_{dR}(X) \simeq \text{Hom}_{\text{SmthSet}}(X, \Omega^n_{dR})$$

In short: Diffeological spaces are the concrete objects in topos of sheaves on CartSp:category of diffeology $DiffSp \xrightarrow{concrete} Sh(CartSp) =: SmthSet$ topos of smooth sets

of the topos of smooth sets.

There is a technical term for this phenomen:

Example. The sheaf of diffe

is not a diffeological space for $n \ge 1$. but is the *smooth moduli space* for differential forms on diffeological spaces:

$$X \in \text{DiffSp} \Rightarrow \Omega^n_{dR}(X) \simeq \text{Hom}_{\text{SmthSet}}(X, \Omega^n_{dR})$$

In short: Diffeological spaces are the concrete objects in topos of sheaves on CartSp: $\begin{array}{c} category \ of \\ diffeology \end{array}$ $\begin{array}{c} DiffSp \xrightarrow{concrete} \\ Sh(CartSp) =: \\ SmthSet \end{array} \qquad \begin{array}{c} topos \ of \\ smooth \ sets \end{array}$

In short: Diffeological spaces are the concrete objects in topos of sheaves on CartSp: $\begin{array}{c} category \ of \\ diffeology \end{array}$ DiffSp $\xrightarrow{concrete}$ Sh(CartSp) =: SmthSet $\begin{array}{c} topos \ of \\ smooth \ sets \end{array}$

		convenience -			>
category of topological spaces					
TopSpc					
	form path ∝	-groupoids		\rightarrow	Grpd_{∞}
	(sing. sim	pl. compl.)	Pth		hasa aa tanas a

base ∞-topos of bare ∞-groupoids

Diffeological Spaces in Perspective.

(sing. simpl. compl.)

base ∞-topos of bare ∞-groupoids

form path ∞-groupoids (sing. simpl. compl.) Pth

base ∞-topos of bare ∞-groupoids

Hurewicz (1948)

Gale (1950)

Steenrod (1967)

Diffeological Spaces in Perspective.

(sing. simpl. compl.)

base ∞-topos of bare ∞-groupoids

base ∞-topos of bare ∞-groupoids

base ∞ -topos of bare ∞ -groupoids

Shimakawa, Yoshida & Haraguchi (2010)

Christensen, Sinnamon & Wu (2014)

base ∞ -topos of bare ∞ -groupoids

sub-∞-topos of proper G-equivariant homotopy theory

Diffeological Spaces in Perspective.

0 – Cohesive ∞-Topoi

I – Equivariant ∞-Bundles

II – TED-K-Theory

III – Anyonic Defect Branes

IV – Quantum Computation

This part is a gentle exposition of the most basic concept underlying these articles:

Equivariant Principal ∞-*bundles* [arXiv:2112.13654] Proper Orbifold Cohomology [arXiv:2008.01101]

Principal ∞ -*bundles* [arXiv:1207.0248/49]

following

Diff. Cohomology in a Cohesive ∞ -Topos [arXiv:1310.7930]

Generalized Cohomology Theories \leftrightarrow **Cohesive Higher Fiber Bundles**

Generalized Cohomology Theories \leftrightarrow **Cohesive Higher Fiber Bundles**

Here "generalized" subsumes "Whitehead-generalized cohomology" (\leftrightarrow spectra) but goes further:

Cohomology \leftrightarrow Higher Bundlesnon-abelian \leftrightarrow general fiberstwisted \leftrightarrow associateddifferential \leftrightarrow cohesiveG-equivariant \leftrightarrow sliced over BG

Generalized Cohomology Theories \leftrightarrow **Cohesive Higher Fiber Bundles**

Here "generalized" subsumes "Whitehead-generalized cohomology" (\leftrightarrow spectra) but goes further:

Cohomology	\leftrightarrow	Higher Bundles		
non-abelian	\leftrightarrow	general fibers		
twisted	\leftrightarrow	associated		
differential	\leftrightarrow	cohesive		
G-equivariant	\leftrightarrow	sliced over B G		

A major phenomenon/subtlety is that the last two aspects go hand-in-hand:

Proper *G***-equivariance** corresponds to the **cohesive slice** over **B***G*, while

Borel equivariance corresponds just to the **slice of shapes**.

2-Groupoids

2-Groupoids are the algebra of 2-dimensional pasting, such that all composition is associative and invertible:

In general we need *n*-groupoids for $n \in \{1, 2, 3, \dots, \infty\}$ but for sake of exposition we may focus on n = 2.

2-Groupoids

2-Groupoids are the algebra of 2-dimensional pasting, such that all composition is associative and invertible:

Accurate intuition:

homotopy classes of surfaces Σ relative boundary paths γ in a topological space:

For *G* a discrete group, there is its *delooping 1-groupoid* – $|\mathbf{B}G|$:

For *G* a discrete group, there is its *delooping 1-groupoid* – $|\mathbf{B}G|$:

For $X \supseteq G$ a *G*-action on a set *X* there is its *action groupoid* or *homotopy quotient* - |X|/S:

Hence: **B** $G \simeq * /\!\!/ G$.

For A an *abelian* group there is the *double delooping 2-groupoid*

$$\mathbf{B}^{2}A = \mathbf{B}(\mathbf{B}A)$$

For $A \supseteq G$ a *linear* action, i.e. by group automorphisms,

there is the delooping 2-groupoid $\mathbf{B}((\mathbf{B}A) \rtimes G) \simeq (\mathbf{B}^2 A) // G$

of the *semidirect product 2-group*:

This is a special case of the delooping of the *automorphism 2-group* of a group Γ :

$$\mathbf{B}\left(\mathrm{Aut}(\mathbf{B}\Gamma)\right) = \mathbf{B}\left(\overbrace{\mathrm{Aut}(\Gamma)/\!\!/\Gamma}\right)$$

This is a special case of the delooping of the *automorphism 2-group* of a group Γ :

$$\mathbf{B}\left(\mathrm{Aut}(\mathbf{B}\Gamma)\right) = \mathbf{B}\left(\overbrace{\mathrm{Aut}(\Gamma)/\!/\Gamma}\right)$$

NB: Always need to choose whether actions are right- or left-actions, hence whether group multiplication is opposite or aligned to arrow composition. Before long we want *structure groups* to act *from the left* and *equivariance groups* to act *from the right*.

Notice:

(1) (BA) \rtimes G is a non-abelian 2-group iff G is a non-abelian group;

Notice:

- (1) (BA) \rtimes G is a non-abelian 2-group iff G is a non-abelian group;
- (2) its delooping sits in this fiber sequence:

2-Groupoids – 2-Functors.

A 2-functor is a map between 2-groupoids respecting identities and composition.

2-Groupoids – 2-Functors.

A 2-functor is a map between 2-groupoids respecting identities and composition.

E.g.: if $\mathbb{Z} \supseteq \mathbb{Z}_2$ by sign inversion, and $G \xrightarrow{\sigma} \mathbb{Z}_2$ a homomorphism then **2nd group cohomology** of *G* with coefficients in $G_{\sigma} \subset \mathbb{Z}$ is 2-functors:

$$\mathbf{B}G \xrightarrow{\mathbf{2-functor} = \mathbf{2-cocycle}}_{\mathbf{B}\sigma} (\mathbf{B}^2 A) /\!\!/ \mathbb{Z}_2$$

2-Groupoids – 2-Functors.

A 2-functor is a map between 2-groupoids respecting identities and composition.

E.g.: if $\mathbb{Z} \supseteq \mathbb{Z}_2$ by sign inversion, and $G \xrightarrow{\sigma} \mathbb{Z}_2$ a homomorphism then **2nd group cohomology** of *G* with coefficients in $G_{\sigma} \subset \mathbb{Z}$ is 2-functors:

A smooth 2-groupoid \mathscr{X} is given by a rule

which to each chart \mathbb{R}^n , $n \in \mathbb{N}$, assigns the plain 2-groupoid Probe $(\mathbb{R}^n, \mathscr{X})$

of ways of smoothly mapping \mathbb{R}^n into the would-be \mathscr{X}

A smooth 2-groupoid \mathscr{X} is given by a rule

which to each chart \mathbb{R}^n , $n \in \mathbb{N}$, assigns the plain 2-groupoid Probe $(\mathbb{R}^n, \mathscr{X})$ of ways of smoothly mapping \mathbb{R}^n into the would-be \mathscr{X}

and to each smooth map of charts a 2-functor of pre-composing such *probes*

such that this respects composition and identities of smooth functions f.

A smooth 2-groupoid \mathscr{X} is given by a rule

which to each chart \mathbb{R}^n , $n \in \mathbb{N}$, assigns the plain 2-groupoid Probe $(\mathbb{R}^n, \mathscr{X})$ of ways of smoothly mapping \mathbb{R}^n into the would-be \mathscr{X}

and to each smooth map of charts a 2-functor of pre-composing such probes

such that this respects composition and identities of smooth functions f.

So $Probe(*, \mathscr{X}) = Probe(\mathbb{R}^0, \mathscr{X})$ is the underlying 2-groupoid and the system of $Probe(\mathbb{R}^{\bullet>0}, \mathscr{X})$ is *smooth structure* on it.

A smooth 2-groupoid \mathscr{X} is given by a rule

which to each chart \mathbb{R}^n , $n \in \mathbb{N}$, assigns the plain 2-groupoid Probe $(\mathbb{R}^n, \mathscr{X})$ of ways of smoothly mapping \mathbb{R}^n into the would-be \mathscr{X}

and to each smooth map of charts a 2-functor of pre-composing such probes

such that this respects composition and identities of smooth functions f.

So $Probe(*, \mathscr{X}) = Probe(\mathbb{R}^0, \mathscr{X})$ is the underlying 2-groupoid and the system of $Probe(\mathbb{R}^{\bullet>0}, \mathscr{X})$ is *smooth structure* on it.

Grothendieck (1965): "functorial geometry"

common jargon: "pre-2-stacks on the site of Cartesian spaces"

If X is a topological space, then as a smooth 2-groupoid it's this assignment:

X :
$$\mathbb{R}^{n} \mapsto \operatorname{Probe}(\mathbb{R}^{n}, \mathbf{X}) := C^{0}(\mathbb{R}^{n}, \mathbf{X})$$

$$\mathbf{x} = \mathbf{x} = \mathbf{x}$$

If X is a smooth manifold, then as a smooth 2-groupoid it's this assignment:

$$X : \mathbb{R}^n \mapsto \operatorname{Probe}(\mathbb{R}^n, X) := C^{\infty}(\mathbb{R}^n, X)$$

(also known as X in its incarnation as a *diffeological space*).

2-Groupoids with smooth structure – Examples.

If Γ a *Lie* group, then the sets of smooth functions $C^{\infty}(\mathbb{R}^n, \Gamma)$ are plain groups, and the *smooth delooping groupoid* **B** Γ is:

$$\mathbf{B}\Gamma$$
 : $\mathbb{R}^n \mapsto \operatorname{Probe}(\mathbb{R}^n, \mathbf{B}\Gamma) := \mathbf{B}(C^{\infty}(\mathbb{R}^n, \Gamma))$

2-Groupoids with smooth structure – Examples.

If Γ a *Lie* group, then the sets of smooth functions $C^{\infty}(\mathbb{R}^n, \Gamma)$ are plain groups, and the *smooth delooping groupoid* **B** Γ is:

$$\mathbf{B}\Gamma$$
 : $\mathbb{R}^n \mapsto \operatorname{Probe}(\mathbb{R}^n, \mathbf{B}\Gamma) := \mathbf{B}(C^{\infty}(\mathbb{R}^n, \Gamma))$

If V is a Γ -representation, then the *smooth moduli space of V-valued differential forms* is

$$\Omega^{d}_{\mathrm{dR}}(-;V)/\!\!/\Gamma \quad : \quad \mathbb{R}^{n} \quad \mapsto \quad \Omega^{d}_{\mathrm{dR}}(\mathbb{R}^{n};V)/\!\!/\Gamma$$

$$egin{aligned} & & \omega_d \cdot \gamma_1 & & & \gamma_i \in C^\inftyig(\mathbb{R}^n,\Gammaig) \ & & \gamma_1 & \gamma_2 & & \omega_d \cdot \gamma_1 \cdot \gamma_2 & & \omega_d \in \Omega^d_{\mathrm{dR}}ig(\mathbb{R}^n;Vig) \end{aligned}$$

Smooth 2-groupoids are *models* for *smooth 2-stacks* aka **smooth homotopy 2-types**

Smooth 2-groupoids are *models* for *smooth* 2-*stacks* aka **smooth homotopy** 2-types

A smooth 2-functor $\mathscr{X} \xrightarrow{f} \mathscr{Y}$ is called:

PrjFib		iff for each \mathbb{R}^n ,
	projective	every $k + 1$ -morphism in Probe $(\mathbb{R}^n, \mathscr{Y})$ that starts
	fibration	at <i>k</i> -morphisms which come from $Probe(\mathbb{R}^n, \mathscr{X})$
		lifts compatibly to a $k+1$ -morphism in Probe $(\mathbb{R}^n, \mathscr{X})$
LWEq	local weak equivalence	iff for every \mathbb{R}^n
		there exists an open ball $0 \in \mathbb{D}_{\varepsilon}^n \xrightarrow{\iota} \mathbb{R}^n$ such
		that $Probe(\mathbb{R}^n, f)_{ i }$ is a weak homotopy equivalence
		namely an iso on the evident homotopy groups
PrjCof	projective cofibration	if (Dugger's sufficient condition):
		for all k, the spaces of k-morphisms are
		disjoint unions of charts \mathbb{R}^n (for any <i>n</i> -s)

Smooth 2-groupoids are *models* for *smooth 2-stacks* aka **smooth homotopy 2-types**

A smooth 2-functor $\mathscr{X} \xrightarrow{f} \mathscr{Y}$ is called:

PrjFib		iff for each \mathbb{R}^n ,
	projective	every $k + 1$ -morphism in Probe $(\mathbb{R}^n, \mathscr{Y})$ that starts
	fibration	at <i>k</i> -morphisms which come from $Probe(\mathbb{R}^n, \mathscr{X})$
		lifts compatibly to a $k+1$ -morphism in Probe $(\mathbb{R}^n, \mathscr{X})$
LWEq	local weak equivalence	iff for every \mathbb{R}^n
		there exists an open ball $0 \in \mathbb{D}_{\varepsilon}^n \xrightarrow{\iota} \mathbb{R}^n$ such
		that $Probe(\mathbb{R}^n, f)_{ i }$ is a weak homotopy equivalence
		namely an iso on the evident homotopy groups
PrjCof	projective cofibration	if (Dugger's sufficient condition):
		for all k, the spaces of k-morphisms are
		disjoint unions of charts \mathbb{R}^n (for any <i>n</i> -s)

Fact/Def.: Maps of 2-stacks

are *modeled* by

$$\bigotimes \xrightarrow{\text{cof. domain}} \widehat{\mathscr{X}} \xrightarrow{\phi} \underbrace{\mathscr{Y}} \xrightarrow{\text{fib.}}_{\text{co-domain}} \ast$$

Smooth 2-groupoids are *models* for *smooth 2-stacks* aka **smooth homotopy 2-types**

A smooth 2-functor $\mathscr{X} \xrightarrow{f} \mathscr{Y}$ is called:

PrjFib		iff for each \mathbb{R}^n ,
	projective	every $k + 1$ -morphism in Probe $(\mathbb{R}^n, \mathscr{Y})$ that starts
	fibration	at <i>k</i> -morphisms which come from $Probe(\mathbb{R}^n, \mathscr{X})$
		lifts compatibly to a $k+1$ -morphism in Probe $(\mathbb{R}^n, \mathscr{X})$
LWEq	local weak equivalence	iff for every \mathbb{R}^n
		there exists an open ball $0 \in \mathbb{D}_{\varepsilon}^n \xrightarrow{\iota} \mathbb{R}^n$ such
		that $Probe(\mathbb{R}^n, f)_{ i }$ is a weak homotopy equivalence
		namely an iso on the evident homotopy groups
PrjCof	projective cofibration	if (Dugger's sufficient condition):
		for all k, the spaces of k-morphisms are
		disjoint unions of charts \mathbb{R}^n (for any <i>n</i> -s)

Fact/Def.: *Maps of 2-stacks* and their *homotopy fibers* are *modeled* by pullbacks of this form: HoFib_v(ϕ) $\longrightarrow \hat{*} \xleftarrow{\text{fib. resolution}} *$

Smooth 2-groupoids are models for smooth 2-stacks aka smooth homotopy 2-types

A smooth 2-functor $\mathscr{X} \xrightarrow{f} \mathscr{Y}$ is called:

Fact/Def.: *Maps of 2-stacks* and their *homotopy fibers* are *modeled* by pullbacks of this form: HoFib_v(ϕ) $\longrightarrow \hat{*} \xleftarrow{\text{fib. resolution}} *$

2-Groupoids with smooth structure – Homotopy fiber sequences.

2-Groupoids with smooth structure – Homotopy fiber sequences.

2-Groupoids with smooth structure – Dixmier-Douady class.

For example, write U(n), $n \in \mathbb{N} \sqcup \{\omega\}$

for the unitary group on a countably-dimensional complex Hilbert space and regard this as a smooth group by its "continuous diffeology":

$$\mathbf{U}(n) : \mathbb{R}^k \mapsto \operatorname{Probe}(\mathbb{R}^k, \mathbf{U}(n)) := C^0(\mathbb{R}^k, \mathbf{U}(n))$$

2-Groupoids with smooth structure – Dixmier-Douady class.

For example, write U(n), $n \in \mathbb{N} \sqcup \{\omega\}$

for the unitary group on a countably-dimensional complex Hilbert space and regard this as a smooth group by its "continuous diffeology":

$$\mathbf{U}(n) : \mathbb{R}^k \mapsto \operatorname{Probe}(\mathbb{R}^k, \mathbf{U}(n)) := C^0(\mathbb{R}^k, \mathbf{U}(n))$$

Then we have the following long fiber sequence of smooth 2-groupoids:

$$\begin{array}{cccc} \mathrm{U}(1) \hookrightarrow \mathrm{U}(n) & & & & & \\ & & & & \uparrow \in \mathrm{LWEq} \\ & & & \mathrm{U}(n) /\!\!/ \mathrm{U}(1) \to \mathrm{BU}(1) \to \mathrm{BU}(n) & & & & \mathrm{BPU}(n) \\ & & & & & \uparrow \in \mathrm{LWEq} \\ & & & & \mathrm{BU}(n) /\!\!/ \mathrm{BU}(1) \to \mathrm{B}^2 \mathrm{U}(1) \end{array}$$

2-Groupoids with smooth structure – Dixmier-Douady class.

For example, write U(n), $n \in \mathbb{N} \sqcup \{\omega\}$

for the unitary group on a countably-dimensional complex Hilbert space and regard this as a smooth group by its "continuous diffeology":

$$\mathbf{U}(n) : \mathbb{R}^k \mapsto \operatorname{Probe}(\mathbb{R}^k, \mathbf{U}(n)) := C^0(\mathbb{R}^k, \mathbf{U}(n))$$

Then we have the following long fiber sequence of smooth 2-groupoids:

$$U(1) \hookrightarrow U(n) \longrightarrow PU(n)$$

$$\uparrow \in LWEq$$

$$U(n) // U(1) \rightarrow BU(1) \rightarrow BU(n) \longrightarrow BPU(n)$$

$$\uparrow \in LWEq$$

$$BU(n) // BU(1) \rightarrow B^{2}U(1)$$

This is compatible with complex conjugation, so we have a map of 2-stacks like this: **universal Dixmier-Douady class** $\mathbf{BPU}(n)/\!\!/\mathbb{Z}_2 \xleftarrow{DD}{} \mathbf{B}^2 \mathbf{U}(1)/\!\!/\mathbb{Z}_2$

2-Groupoids with smooth structure – Čech groupoids.

For X a smooth manifold with $\{U_i \hookrightarrow X\}_{i \in I}$ a good open cover, in that

$$(\mathbf{x},(i_1,\cdots,i_n)) \in C^{\infty}(\mathbb{R}^m, U_{i_1}\cap\cdots\cap U_{i_n}) \Rightarrow U_{i_1}\cap\cdots\cap U_{i_n} \simeq \mathbb{R}^{\dim(X)}$$

2-Groupoids with smooth structure – Čech groupoids.

For X a smooth manifold with $\{U_i \hookrightarrow X\}_{i \in I}$ a good open cover, in that

$$(\mathbf{x},(i_1,\cdots,i_n)) \in C^{\infty}(\mathbb{R}^m, U_{i_1}\cap\cdots\cap U_{i_n}) \Rightarrow U_{i_1}\cap\cdots\cap U_{i_n} \underset{\text{diff}}{\simeq} \mathbb{R}^{\dim(X)},$$

we have the smooth *Čech 2-groupoid*:

which is a projectively cofibrant resolution of X.

2-Groupoids with smooth structure – Čech cocycles.

Smooth 2-functors from such a Čech resolution $\widehat{X} \to X$ to the delooping **B** Γ of a Lie group are *cocycles* in the *Čech cohomology* of X with coefficients in Γ :

Principal bundles via smooth groupoids – Universal principal bundles.

The inclusion of the unique base point into $\mathbf{B}\Gamma$ has the following *fibrant resolution*:

Principal bundles via smooth groupoids.

The *homotopy fiber* of a 2-functor = Čech cocycle is equivalently *the principal bundle* P *it classifies*:

Principal bundles via smooth groupoids.

The *homotopy fiber* of a 2-functor = Čech cocycle is equivalently *the principal bundle* P *it classifies*:

Principal bundles via smooth groupoids.

The *homotopy fiber* of a 2-functor = Čech cocycle is equivalently *the principal bundle* P *it classifies*:

Principal 2-bundles via smooth 2-groupoids.

This neat formulation of ordinary principal bundles

immediatly generalizes to give principal 2-bundles:

Principal 2-bundles via smooth 2-groupoids.

This neat formulation of ordinary principal bundles immediatly generalizes to give principal 2-bundles:

E.g. for the structure 2-group $\text{Aut}(B\Gamma)$

these are equivalently Giraud's non-abelian gerbes:

While it's tradition to be esoteric about this simple affair,

here to highlight that this is really about *twisted cohomology*:
Principal 2-bundles via smooth 2-groupoids – Example: Twisted cohomology.

For structure 2-group Aut($\mathbf{B}\mathbb{Z}$) \simeq ($\mathbf{B}\mathbb{Z}$) $\rtimes \mathbb{Z}_2$,

with $\mathbf{B}\operatorname{Aut}(\mathbf{B}\mathbb{Z}) \simeq (\mathbf{B}^2\mathbb{Z})/\!/\mathbb{Z}_2$ and $\widehat{\mathbf{X}} \xrightarrow{\sigma} \mathbf{B}\mathbb{Z}_2$ a double covering, then **2nd integral cohomology** of X with local coefficients is smooth 2-functors:

$$\widehat{\mathbf{X}} \xrightarrow{\text{smooth 2-functor} = \check{\mathbf{Cech 2-cocycle}}}_{\sigma \to \mathbf{B}\mathbb{Z}_2} (\mathbf{B}^2\mathbb{Z})/\!\!/\mathbb{Z}_2$$

Principal 2-bundles via smooth 2-groupoids – Example: Twisted cohomology.

For structure 2-group Aut($\mathbb{B}\mathbb{Z}$) \simeq ($\mathbb{B}\mathbb{Z}$) $\rtimes \mathbb{Z}_2$, with $\mathbb{B}\operatorname{Aut}(\mathbb{B}\mathbb{Z}) \simeq (\mathbb{B}^2\mathbb{Z})/\!/\mathbb{Z}_2$ and $\widehat{X} \xrightarrow{\sigma} \mathbb{B}\mathbb{Z}_2$ a double covering, then **2nd integral cohomology** of X with local coefficients is smooth 2-functors:

Principal 2-bundles via smooth 2-groupoids – Example: Jandl bundle gerbes.

For structure 2-group Aut($\mathbf{BU}(1)$) $\simeq (\mathbf{BU}(1)) \rtimes \mathbb{Z}_2$, with $\mathbf{BAut}(\mathbf{BU}(1)) \simeq (\mathbf{B}^2\mathbf{U}(1))/\!\!/\mathbb{Z}_2$ and $\widehat{\mathbf{X}} \xrightarrow{\sigma} \mathbf{B}\mathbb{Z}_2$ a double covering, then **2nd** U(1)-valued cohomology of X with local coefficients is smooth 2-functors:

Principal 2-bundles via smooth 2-groupoids – Example: Twisted cohomology.

For equivariant de Rham coefficients with $G \ CV$ a representation of a finite group:

So:

Non-abelian 1-cohomology is modulated by 1-stacks $\mathbf{B}\Gamma$, abelian 2-cohomology is modulated by 2-stacks \mathbf{B}^2A , etc.

Higher fiber/principal bundles are *bundles of such moduli stacks*, hence are families of moduli stacks that vary over the base space, hence locally modulate cohomology as before, but now subject to global twists.

Finally, the "higher topos" of smooth 2-groupoids has *equivariance* natively built into it: just let domain spaces be groupoids, too.

Finally, the "higher topos" of smooth 2-groupoids has *equivariance* natively built into it: just let domain spaces be groupoids, too:

For X \supseteq *G* a smooth action of a finite group on a smooth manifold.

there exists an *equivariant good open cover*

and its equivariant Čech groupoid:

action groupoid

For X \supseteq *G* a smooth manifold and $\Gamma \supseteq$ *G* a smooth 2-group

both equipped with smooth G-action, a

G-equivariant Γ -principal 2-bundle on X is modulated by a smooth 2-functor like this:

For X \supseteq *G* a smooth manifold and $\Gamma \supseteq$ *G* a smooth 2-group

both equipped with smooth G-action, a

G-equivariant Γ -principal 2-bundle on X is modulated by a smooth 2-functor like this:

For X \supseteq *G* a smooth manifold and $\Gamma \supseteq$ *G* a smooth 2-group

both equipped with smooth G-action, a

G-equivariant Γ -principal 2-bundle on X is modulated by a smooth 2-functor like this:

on the right we have equivalently the semidirect product 2-group.

For X \supseteq *G* a smooth manifold and $\Gamma \supseteq$ *G* a smooth 2-group

both equipped with smooth G-action, a

G-equivariant Γ -principal 2-bundle on X is modulated by a smooth 2-functor like this:

on the right we have equivalently the semidirect product 2-group.

Principal 2-bundles via smooth 2-groupoids – Associated 2-bundles.

A fibration over that is equivalently an equivariant ∞ -action ($\Gamma \rtimes G$) $\triangleleft A$ embodied by its universal *associated 2-bundle*.

Principal 2-bundles via smooth 2-groupoids – Associated 2-bundles.


```
Its pullback is
the equivariant A-fiber 2-bundle
which is associated to
the given equivariant principal 2-bundle.
```


The equivariant sections are equivalently the lifts of the modulating map.

Equivalently, these are the *cocycles* of τ -twisted *G*-equivariant *A*-cohomology.

Twisted equivariant non-abelian cohomology.

Equivalently, these are the *cocycles* of τ -twisted *G*-equivariant *A*-cohomology.

0 – Cohesive ∞-Topoi

I – Equivariant ∞-Bundles

II – TED-K-Theory

III – Anyonic Defect Branes

IV – Quantum Computation

This part is a quick motivation and exposition of twisted equivariant KR-theory following these articles:

Equivariant Principal ∞ -bundles [arXiv:2112.13654] Anyonic Defect Branes in TED-K-Theory [arXiv:2203.11838] *The TED character map*

(in preparation)

Vacua of electron/positron field in Coulomb background.

Fact ([KS77][CHO82]). The vacua of the free Dirac quantum field in a classical Coulomb background...

Vacua of electron/positron field in Coulomb background.

Fact ([KS77][CHO82]). The vacua of the free Dirac quantum field in a classical Coulomb background are characterized by Fredholm operators...

Vacua of electron/positron field in Coulomb background.

Fact ([KS77][CHO82]). The vacua of the free Dirac field in a classical Coulomb background are characterized by Fredholm operators

on the single-electron/positron Hilbert space:

Quantum symmetries.

On these dressed vacua of electron/positron states the following *CPT-twisted projective group*

group of quantum symmetries

$$C := PT, \quad P \cdot \begin{bmatrix} U_+, U_- \end{bmatrix} := \begin{bmatrix} U_-, U_+ \end{bmatrix} \cdot P, \qquad T \cdot \begin{bmatrix} U_+, U_- \end{bmatrix} := \begin{bmatrix} \overline{U}_+, \overline{U}_- \end{bmatrix} \cdot T$$

Quantum symmetries.

On these dressed vacua of electron/positron states the following *CPT-twisted projective group*

group of quantum symmetries

$$C := PT, \quad P \cdot \begin{bmatrix} U_+, U_- \end{bmatrix} := \begin{bmatrix} U_-, U_+ \end{bmatrix} \cdot P, \quad T \cdot \begin{bmatrix} U_+, U_- \end{bmatrix} := \begin{bmatrix} \overline{U}_+, \overline{U}_- \end{bmatrix} \cdot T$$

naturally acts by conjugation:

$$\begin{bmatrix} U_{+}, U_{-} \end{bmatrix} : F \longmapsto U_{+}^{-1} \circ F \circ U_{-}$$

$$C \cdot \begin{bmatrix} U_{+}, U_{-} \end{bmatrix} : F \longmapsto U_{-}^{-1} \circ F^{t} \circ U_{+}$$

$$P \cdot \begin{bmatrix} U_{+}, U_{-} \end{bmatrix} : F \longmapsto U_{-}^{-1} \circ F^{*} \circ U_{+}$$

$$T \cdot \begin{bmatrix} U_{+}, U_{-} \end{bmatrix} : F \longmapsto U_{+}^{-1} \circ \overline{F} \circ U_{-}$$

Twisted equivariant KR-theory – As a single diagram of smooth groupoids.

Homotopy classes of quantum-symmetry equivariant families of such self-adjoint odd Fredholm operators constitute *twisted equivariant* KR-*cohomology*:

Twisted equivariant KR-theory – As a single diagram of smooth groupoids.

Homotopy classes of quantum-symmetry equivariant families of such self-adjoint odd Fredholm operators constitute *twisted equivariant* KR-*cohomology*:

Twisted equivariant KR-theory – As a single diagram of smooth groupoids.

Homotopy classes of quantum-symmetry equivariant families of such self-adjoint odd Fredholm operators constitute *twisted equivariant* KR-*cohomology*:

CPT Quantum symmetries.

$$\mathbf{B}(\{e,T\}) \xrightarrow{T \longmapsto \widehat{T}} \mathbf{B}\left(\{e,T\}\right) \xrightarrow{T \longmapsto \widehat{T}} \mathbf{B}\left(\frac{U(\mathcal{H}) \times U(\mathcal{H})}{U(1)} \rtimes \{e,T\}\right) \longrightarrow \mathbf{B}\left(\mathbf{B}U(1) \rtimes \{e,T\}\right) \\
 \mathbf{B}\left(\{e,P\} \times \{e,T\}\right)$$

Let's use the previous machinery to compute the possible quantum T-symmetries...

CPT Quantum symmetries.

 \mapsto

CPT Quantum symmetries.

So $\overline{c} = c$ and hence there are two choices for quantum T-symmetry, up to homotopy: $\widehat{T}^2 = \pm 1$ and similarly $\widehat{C}^2 = \pm 1$.

Example – Orientifold KR-theory

Let *I* be *I*nversion action on 2-torus $\widetilde{\mathbb{T}}^2 \simeq \mathbb{R}^2 / \mathbb{Z}^2$ and trivial action on observables

If *T* acts as *I* on \mathbb{T}^2 , then $KR^{\hat{T}^2 = +1}$ is *Atiyah's Real K-theory* aka *orienti-fold* K-theory:

Example – Orientifold KR-theory

Let *I* be *I*nversion action on 2-torus $\widetilde{\mathbb{T}}^2 \simeq \mathbb{R}^2 / \mathbb{Z}^2$ and trivial action on observables

If *T* acts as *I* on \mathbb{T}^2 , then $KR^{\hat{T}^2 = +1}$ is *Atiyah's Real K-theory* aka *orienti-fold* K-theory:

But what happens on *I*-fixed loci i.e. on "orientifolds" ?

CPT Quantum symmetries – 10 global choices.

(following [FM12, Prop. 6.4])

Equivariance group	<i>G</i> =	{e}	{e, <i>P</i> }	$\{e,T\}$		{e, <i>C</i> }		$\{e,T\} \times \{e,C\}$			
Realization as τ .	$\widehat{T}^2 =$			+1	-1			+1	-1	-1	+1
quantum symmetry	$\widehat{C}^2 =$					+1	-1	+1	+1	-1	-1
	$E_{-3} =$								i <i>TĈβ</i>		
	$E_{-2} =$					iĈβ			iĈβ		
Maximal induced	$E_{-1} =$		$\widehat{P}eta$			$\widehat{C}\beta$		$\widehat{C}oldsymbol{eta}$	Ĉβ		
Clifford action anticommuting with	$E_{+0} =$	β	β	β	$\left(\begin{array}{cc}\beta & 0\\ 0 & -\beta\end{array}\right)$	β	β	β	β	β	β
all <i>G</i> -invariant odd Fredholm operators	$E_{+1} =$				$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$		Ĉβ			Ĉβ	Ĉβ
	$E_{+2} =$				$\begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$		iĈβ			iĈβ	
	$E_{+3} =$				$\begin{pmatrix} 0 & -\widehat{T} \\ \widehat{T} & 0 \end{pmatrix}$					i <i>TĈβ</i>	
	$E_{+4} =$				$\begin{pmatrix} 0 & i\widehat{T} \\ i\widehat{T} & 0 \end{pmatrix}$						
τ -twisted <i>G</i> -equivariant KR-theory of fixed loci	$KR^{\tau} =$	KU ⁰	KU ¹	KO ⁰	KO ⁴	KO ²	KO ⁶	KO ¹	KO ³	KO ⁵	KO ⁷

	$\widehat{F}: \mathcal{H}$ $\widehat{F}^* =$ dim(k [Karow	$f^2 \xrightarrow[K-linear]{} F := F + { m ter}(\widehat{F}) < { m ter}(\widehat{F})$	\mathcal{H}^2 - F^* ∞	graded comp $E_i \circ \widehat{F} = -$ Fred ^{<i>p</i>} _K	n. - $\widehat{F} \circ E_i$ / \sim_{htpy}	bounded with (anti-)se Clifford = { KU ^P KO ^P	d oper. elf-adjoint gen. Y(X) = 1 Y(X) = 1	E_{0}, \cdot $(E_{i})^{*}$ $E_{i} \circ I$ KU^{p+2} KO^{p+8}	$ \begin{array}{l} \cdots, E_p: \\ f = \operatorname{sgn}_i \\ E_j + E_j \\ \hline X \end{pmatrix} \\ X \end{pmatrix} \\ \end{array} $	$\mathcal{H}^2 \stackrel{\text{bound}}{\mathbb{K}-\lim}$ $\cdot E_i$ $\circ E_i = 2s$ $\mathbb{K} = \mathbb{C}$ $\mathbb{K} = \mathbb{R}$	$\frac{\text{led}}{\text{ear}} \mathcal{H}^2$ $\text{sgn}_i \cdot \delta_{ij}$	
Maximal induced Clifford action anticommuting with all <i>G</i> -invariant odd Fredholm operators	-	$E_{-3} =$								i <i>TĈβ</i>		
	_	$E_{-2} =$					iĈβ			iĈβ		
	1.	$E_{-1} =$		$\widehat{P}eta$			Ĉβ		$\widehat{C}oldsymbol{eta}$	$\widehat{C}oldsymbol{eta}$		
	th .	$E_{+0} =$	β	β	β	$\left(egin{smallmatrix}eta & 0 \\ 0 & -eta \end{array} ight)$	β	β	β	β	β	β
	d rs	$E_{+1} =$				$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$		$\widehat{C}oldsymbol{eta}$			$\widehat{C}eta$	$\widehat{C}oldsymbol{eta}$
		$E_{+2} =$				$\left(\begin{array}{cc} 0 & i \\ i & 0 \end{array}\right)$		iĈβ			iĈβ	
		$E_{+3} =$				$\begin{pmatrix} 0 & -\widehat{T} \\ \widehat{T} & 0 \end{pmatrix}$					i <i>TĈβ</i>	
		$E_{+4} =$				$ \left(\begin{array}{cc} 0 & i\widehat{T} \\ i\widehat{T} & 0 \end{array}\right) $						
τ -twisted <i>G</i> -equivar KR-theory of fixed	iant loci	$KR^{\tau} =$	KU ⁰	KU ¹	KO ⁰	KO ⁴	KO ²	KO ⁶	KO ¹	KO ³	KO ⁵	KO ⁷

Example – TI-equivariant KR-theory is KO⁰-theory.

The combination $T \cdot I$ acts trivially on the domain space and by complex conjugation on observables.

Hence $(T \cdot I)$ -equivariant $(\widehat{T}^2 = +1)$ -twisted KR-theory is KO⁰-theory:

n =	0	1	2	3	4	5	6	7	8	9	
$\mathrm{KO}^{0}(S^{n}_{*}) =$	\mathbb{Z}	\mathbb{Z}_2	\mathbb{Z}_2	0	\mathbb{Z}	0	0	0	\mathbb{Z}	\mathbb{Z}_2	•••

Example – *TI*-equivariant KR-theory of punctured torus.

So the *TI*-equivariant $(\hat{T}^2 = +1)$ -twisted KR-theory of the *N*-punctured torus is

$$\operatorname{KR}^{(\widehat{T}^{2} = +1)} \left(\widetilde{\mathbb{T}}^{2} \setminus \{k_{1}, \cdots, k_{N}\} \right)$$

$$\simeq \operatorname{KO}^{0} \left(\widetilde{\mathbb{T}}^{2} \setminus \{k_{1}, \cdots, k_{N}\} \right)$$

$$\simeq \operatorname{KO}^{0} \left(\bigvee_{1+N} S^{1}_{*} \right) \quad (N \ge 1)$$

$$\simeq \bigoplus_{1+N} \mathbb{Z}_{2}$$

The B-field twist.

Besides these CPT-quantum symmetries,

K-theory generically admits the famous *twisting by a B-field*:

The homotopy fiber sequence of 2-stacks discussed before

universal Dixmier-Douady class

$$\mathbf{B}\mathbf{U}(\mathcal{H}) \longrightarrow \mathbf{B}\big(\mathbf{U}(\mathcal{H})/\mathbf{U}(1)\big) \xrightarrow{\mathrm{DD}} \mathbf{B}^2\mathbf{U}(1)$$
The B-field twist.

Besides these CPT-quantum symmetries,

K-theory generically admits the famous *twisting by a B-field*:

The homotopy fiber sequence of 2-stacks discussed before

universal Dixmier-Douady class

$$\mathbf{B}\mathbf{U}(\mathcal{H}) \longrightarrow \mathbf{B}\big(\mathbf{U}(\mathcal{H})/\mathbf{U}(1)\big) \xrightarrow{\mathrm{DD}} \mathbf{B}^2\mathbf{U}(1)$$

induces a surjection of equivalence classes of equivariant higher bundles

equivariant projective bundles $\pi_0 \operatorname{Map}\left(\widehat{X/\!\!/ G}, \mathbf{B}(U(\mathcal{H})/U(1))\right) \xrightarrow{\mathrm{DD}_*} \pi_0 \operatorname{Map}\left(\widehat{X/\!\!/ G}, \mathbf{B}^2 U(1)\right)$

equivariant bundle gerbes

The B-field twist.

Besides these CPT-quantum symmetries,

K-theory generically admits the famous *twisting by a B-field*:

The homotopy fiber sequence of 2-stacks discussed before

universal Dixmier-Douady class

$$\mathbf{B}\mathbf{U}(\mathcal{H}) \longrightarrow \mathbf{B}\big(\mathbf{U}(\mathcal{H})/\mathbf{U}(1)\big) \xrightarrow{\mathrm{DD}} \mathbf{B}^2\mathbf{U}(1)$$

induces a surjection of equivalence classes of equivariant higher bundles

equivariant projective bundles $\pi_0 \operatorname{Map}\left(\widehat{X/\!\!/ G}, \mathbf{B}(\mathbf{U}(\mathcal{H})/\mathbf{U}(1))\right) \xrightarrow{\mathrm{DD}_*} \pi_0 \operatorname{Map}\left(\widehat{X/\!\!/ G}, \mathbf{B}^2\mathbf{U}(1)\right)$

equivariant bundle gerbes

which has a natural section:

"stable twists"
$$\pi_0 \operatorname{Map}(\widehat{X/\!\!/ G}, \mathbf{B}^2 \mathrm{U}(1)) \hookrightarrow \pi_0 \operatorname{Map}\left(\widehat{X/\!\!/ G}, \mathbf{B}\left(\frac{\mathrm{U}(\mathcal{H}) \times \mathrm{U}(\mathcal{H})}{\mathrm{U}(1)} \rtimes \left(\{\mathrm{e}, C\} \times \{\mathrm{e}, P\}\right)\right)\right)$$

equivariant bundle gerbes

full quantum-symmetry twists

The B-field twist – Inner local systems.

On fixed loci (orbi-singularities)

$$X/\!\!/G \simeq X \times */\!\!/G = X \times \mathbf{B}G$$

the B-field twist induces *secondary* twists by "inner local systems":

stable twists over fixed locus $Map(X \times * //G, B^2U(1)) \simeq Map(X \times BG, B^2U(1))$

 $\simeq \operatorname{Map}(\mathbf{X}, \operatorname{Map}(\mathbf{B}G, \mathbf{B}^2\mathbf{U}(1)))$

On fixed loci (orbi-singularities)

$$X/\!\!/G \simeq X \times */\!\!/G = X \times BG$$

the B-field twist induces *secondary* twists by "inner local systems":

stable twists over fixed locus $Map(X \times * //G, \mathbf{B}^2 U(1)) \simeq Map(X \times \mathbf{B}G, \mathbf{B}^2 U(1))$ $\simeq Map(X, Map(\mathbf{B}G, \mathbf{B}^2 U(1)))$ $\simeq Map(X, \mathbf{B}G^* \times \mathbf{B}^2 U(1))$

Here we are assuming $G \subset_{\text{fin}} SU(2)$ so that $H^2_{\text{Grp}}(G, U(1)) = 0$. And $G^* := \text{Hom}(G, U(1))$ denotes the Pontrjagin-dual group. On fixed loci (orbi-singularities)

$$X/\!\!/G \simeq X \times */\!\!/G = X \times \mathbf{B}G$$

the B-field twist induces *secondary* twists by "inner local systems":

stable twists over fixed locus $Map(X \times * //G, \mathbf{B}^2 U(1)) \simeq Map(X \times \mathbf{B}G, \mathbf{B}^2 U(1))$

- $\simeq \operatorname{Map}(\mathbf{X}, \operatorname{Map}(\mathbf{B}G, \mathbf{B}^2\mathbf{U}(1)))$
- $\simeq \operatorname{Map}(\mathbf{X}, \mathbf{B}G^* \times \mathbf{B}^2 \mathbf{U}(1))$

 $\simeq \operatorname{Map}(X, \mathbf{B}G^*) \times \operatorname{Map}(X, \mathbf{B}^2 \mathrm{U}(1))$ inner local systems bundle gerbes

Here we are assuming $G \subset_{\text{fin}} \text{SU}(2)$ so that $H^2_{\text{Grp}}(G, U(1)) = 0$. And $G^* := \text{Hom}(G, U(1))$ denotes the Pontrjagin-dual group.

Hence the

Hence the

Hence the

Hence the

The B-field twist – Inner local systems – The proof.

For the proof we consider the following diagram [SS22-Bun, Ex. 4.1.56][SS22, §3]:

For the proof we consider the following diagram [SS22-Bun, Ex. 4.1.56][SS22, §3]:

One aspect of these twistings becomes transparent under the Chern character:

$$\begin{array}{ll} \text{complex K-theory} & & \text{periodic de Rham cohomology} \\ \text{KU}^{0}(\text{X}) & \xrightarrow{\text{Chern character}} & \text{KU}^{0}(\text{X}; \mathbb{C}) & \simeq & \bigoplus_{d \in \mathbb{N}} H^{2d} \left(\Omega^{\bullet}_{dR}(\text{X}; \mathbb{C}), d \right) \end{array}$$

The B-field twist – Inner local systems – Chern character.

One aspect of these twistings becomes transparent under the Chern character:

$$\begin{array}{ll} \text{complex K-theory} & & \text{periodic de Rham cohomology} \\ \text{KU}^{0}(\text{X}) \xrightarrow[]{\text{Chern character}} & \text{KU}^{0}(\text{X}; \mathbb{C}) & \simeq & \bigoplus_{d \in \mathbb{N}} H^{2d} \left(\Omega^{\bullet}_{dR} \left(\text{X}; \mathbb{C} \right), d \right) \end{array}$$

For twist by B-field \widehat{B}_2 there is a closed differential 3-form H_3 such that:

The B-field twist – Inner local systems – Chern character.

One aspect of these twistings becomes transparent under the Chern character:

$$\begin{array}{ll} \text{complex K-theory} & & \text{periodic de Rham cohomology} \\ \text{KU}^{0}(\text{X}) & \xrightarrow{\text{Chern character}} & \text{KU}^{0}(\text{X}; \mathbb{C}) & \simeq & \bigoplus_{d \in \mathbb{N}} H^{2d} \left(\Omega^{\bullet}_{dR}(\text{X}; \mathbb{C}), d \right) \end{array}$$

For twist by B-field \widehat{B}_2 there is a closed differential 3-form H_3 such that:

plain B-field
-twisted K-theory

$$KU^{n+\widehat{B}_{2}}(X) \xrightarrow{\text{twisted}} KU^{\widehat{B}_{2}}(X; \mathbb{C}) \simeq \bigoplus_{d \in \mathbb{Z}} H^{n+2d} \left(\Omega^{\bullet}_{dR}(X; \mathbb{C}), d + H_{3} \wedge \right)$$

For twist by inner C_{κ} -local system, there is closed 1-form ω_1 with holon. in $C_{\kappa} \subset U(1)$ such that:

$$\begin{array}{ll} \text{inner local system} \\ \text{-twisted K-theory} & 1\text{-twisted periodic de Rham cohomology} \\ \text{KU}_{C_{\kappa}}^{n+[\omega_{1}]}(\text{X}) \xrightarrow[\text{twisted equivariant}]{\text{twisted equivariant}} & \bigoplus_{\substack{d \in \mathbb{Z} \\ 1 \leq r \leq \kappa}} H^{n+2d}\left(\Omega_{\text{dR}}^{\bullet}(\text{X};\mathbb{C}), d+r \cdot \boldsymbol{\omega}_{1} \wedge \right) \end{array}$$

One aspect of these twistings becomes transparent under the Chern character:

This is the hidden 1-twisting in TED-K – that we will next relate to anyons. \longrightarrow

- 0 Cohesive ∞-Topoi
- I Equivariant ∞-Bundles
- II TED-K-Theory
- III Anyonic Defect Branes

IV – Quantum Computation

This part is a brief indication of a few aspects discussed in:

Anyonic Defect Branes in TED-K-Theory [arXiv:2203.11838]

Solid state physics	K-theory	String theory

Solid state physics	K-theory	String theory
Single electron state	Line bundle	Single D-brane
Single positron state	Virtual line bundle	Single anti D-brane
Bloch-Floquet transform	Hilbert space bundle	coincident D9/D9-branes

Solid state physics	K-theory	String theory
Single electron state	Line bundle	Single D-brane
Single positron state	Virtual line bundle	Single anti D-brane
Bloch-Floquet transform	Hilbert space bundle	coincident D9/ $\overline{D9}$ -branes
Dressed Bloch-Dirac vacuum operator	Family of Fredholm operators	Tachyon field
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	D-brane Sen vacuum after tachyon condensation
Topological phase	K-theory class	Stable D-brane charge

Solid state physics	K-theory	String theory
Single electron state	Line bundle	Single D-brane
Single positron state	Virtual line bundle	Single anti \overline{D} -brane
Bloch-Floquet transform	Hilbert space bundle	coincident D9/ $\overline{D9}$ -branes
Dressed Bloch-Dirac vacuum operator	Family of Fredholm operators	Tachyon field
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	D-brane Sen vacuum after tachyon condensation
Topological phase	K-theory class	Stable D-brane charge
CPT symmetry	KR/KU/KO-theory	Type I/IIA/IIB
Crystallographic symmetry	Orbifold K-theory	Spacetime orbifolding

Solid state physics	K-theory	String theory
Single electron state	Line bundle	Single D-brane
Single positron state	Virtual line bundle	Single anti D-brane
Bloch-Floquet transform	Hilbert space bundle	coincident D9/ $\overline{D9}$ -branes
Dressed Bloch-Dirac vacuum operator	Family of Fredholm operators	Tachyon field
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	D-brane Sen vacuum after tachyon condensation
Topological phase	K-theory class	Stable D-brane charge
CPT symmetry	KR/KU/KO-theory	Type I/IIA/IIB
Crystallographic symmetry	Orbifold K-theory	Spacetime orbifolding
Internal symmetry	Inner local system-twist	Inside of orbi-singularity

Solid state physics	K-theory	String theory
Single electron state	Line bundle	Single D-brane
Single positron state	Virtual line bundle	Single anti \overline{D} -brane
Bloch-Floquet transform	Hilbert space bundle	coincident D9/ $\overline{D9}$ -branes
Dressed Bloch-Dirac vacuum operator	Family of Fredholm operators	Tachyon field
Valence bundle of electron/positron states	Virtual bundle of their kernels and cokernels	D-brane Sen vacuum after tachyon condensation
Topological phase	K-theory class	Stable D-brane charge
CPT symmetry	KR/KU/KO-theory	Type I/IIA/IIB
Crystallographic symmetry	Orbifold K-theory	Spacetime orbifolding
Internal symmetry	Inner local system-twist	Inside of orbi-singularity
Anyons	Punctures	Defect branes

In solid state physics

anyons are presumed pointlike defects in gapped topological phases of effectively 2-dimensional materials whose adiabatic dynamics is that of Wilson lines in $\mathfrak{su}(2)$ -CS theory.

(numerical simulation from arXiv:1901.10739)

In solid state physics anyons are presumed pointlike defects in gapped topological phases of effectively 2-dimensional materials whose adiabatic dynamics is that of Wilson lines in $\mathfrak{su}(2)$ -CS theory.

In string theory

exotic branes of codimension=2, such as D7-branes @ ALE in 9+1 D or M3 = M5 \perp M5 branes in 5+1 dim, are thought to carry SL(2)-charges and to be anyonic [dBS13, p.65]

In solid state physics

anyons are presumed pointlike defects in gapped topological phases of effectively 2-dimensional materials whose adiabatic dynamics is that of Wilson lines in $\mathfrak{su}(2)$ -CS theory.

In string theory

exotic branes of codimension=2, such as D7-branes @ ALE in 9+1 d or M3 = M5 \perp M5 branes in 5+1 dim, are thought to carry SL(2)-charges and to be anyonic [dBS13, p.65]

In either case, none of these expectations had been borne out in K-theory.

In solid state physics

anyons are presumed pointlike defects in gapped topological phases of effectively 2-dimensional materials whose adiabatic dynamics is that of Wilson lines in $\mathfrak{su}(2)$ -CS theory.

In string theory

exotic branes of codimension=2, such as D7-branes @ ALE in 9+1 d or $M3 = M5 \perp M5$ branes in 5+1 dim, are thought to carry SL(2)-charges and to be anyonic [dBS13, p.65]

In either case, none of these expectations had been borne out in K-theory.

Concretely, it is expected that:

ground state wave functions of $spin=w_I \ \widehat{\mathfrak{su}_2}^k$ -anyons at positions z_I in transverse plane $\left.\begin{array}{c} space \ of "conformal block" \\ \simeq \ ConfBlck" \\ \widehat{\mathfrak{sl}_2}^k (\vec{w}, \vec{z}) \end{array}\right.$

space of "conformal blocks"

In solid state physics

anyons are presumed pointlike defects in gapped topological phases of effectively 2-dimensional materials whose adiabatic dynamics is that of Wilson lines in $\mathfrak{su}(2)$ -CS theory.

In string theory

exotic branes of codimension=2, such as D7-branes @ ALE in 9+1 d or M3 = M5 \perp M5 branes in 5+1 dim, are thought to carry SL(2)-charges and to be anyonic [dBS13, p.65]

In either case, none of these expectations had been borne out in K-theory.

Concretely, it is expected that:

ground state wave functions of $spin=w_I \ \widehat{\mathfrak{su}_2}^k$ -anyons at positions z_I in transverse plane $space of "conformal block" \cong ConfBlck"_{\widehat{\mathfrak{sl}_2}^k}(\vec{w}, \vec{z})$

space of "conformal blocks"

As the positions z_1 move, these spaces constitute braid group representations.

In solid state physics

anyons are presumed pointlike defects in gapped topological phases of effectively 2-dimensional materials whose adiabatic dynamics is that of Wilson lines in $\mathfrak{su}(2)$ -CS theory.

In string theory

exotic branes of codimension=2, such as D7-branes @ ALE in 9+1 d or $M3 = M5 \perp M5$ branes in 5+1 dim, are thought to carry SL(2)-charges and to be anyonic [dBS13, p.65]

In either case, none of these expectations had been borne out in K-theory.

Concretely, it is expected that:

 $\left\{\begin{array}{l} \text{ground state wave functions of} \\ \text{spin}=w_I \ \widehat{\mathfrak{su}_2}^k\text{-anyons at} \\ \text{positions } z_I \text{ in transverse plane} \end{array}\right\} \begin{array}{l} \text{space of "conformal block} \\ \simeq \ \text{ConfBlck}^{\bullet}_{\widehat{\mathfrak{sl}_2}^k}(\vec{w},\vec{z}) \\ \end{array}$

space of "conformal blocks"

As the positions z_1 move, these spaces constitute braid group representations.

Previously **Open Question**: *Is this structure at all reflected in TED-K-Theory?*

In solid state physics

anyons are presumed pointlike defects in gapped topological phases of effectively 2-dimensional materials whose adiabatic dynamics is that of Wilson lines in $\mathfrak{su}(2)$ -CS theory.

In string theory

exotic branes of codimension=2, such as D7-branes @ ALE in 9+1 d or M3 = M5 \perp M5 branes in 5+1 dim, are thought to carry SL(2)-charges and to be anyonic [dBS13, p.65]

In either case, none of these expectations had been borne out in K-theory.

Concretely, it is expected that:

 $\left\{\begin{array}{c} \text{ground state wave functions of} \\ \text{spin}=w_I \ \widehat{\mathfrak{su}_2}^k\text{-anyons at} \\ \text{positions } z_I \text{ in transverse plane} \end{array}\right\} \begin{array}{c} \text{space of "conformal block} \\ \simeq \ \text{ConfBlck}^{\bullet}_{\widehat{\mathfrak{sl}_2}^k}(\vec{w},\vec{z}) \\ \end{array}$

space of "conformal blocks"

As the positions z_1 move, these spaces constitute braid group representations.

Previously **Open Question**: *Is this structure at all reflected in TED-K-Theory?*

Yes!

Consider

Consider

Consider

Generally, consider configuration spaces of points (e.g. [SS19, §2.2])

$$\operatorname{Conf}_{\{1,\cdots,n\}}(\mathbf{X}) := \left\{ z^1, \cdots, z^n \in \mathbf{X} \mid \bigcup_{i < j} z^i \neq z^j \right\}.$$

with $\boldsymbol{\omega}_1 := \sum_{1 \le i \le n} \sum_I -\frac{\mathbf{w}_I}{\kappa} \frac{\mathrm{d}z}{z - z_I} + \sum_{1 \le i < j \le n} \frac{2}{\kappa} \frac{\mathrm{d}z}{z^i - z^j} \quad \text{on} \quad \operatorname{Conf}_{\{1,\cdots,n\}}(\mathbb{C} \setminus \{\vec{z}\})$

Then:

Generally, consider configuration spaces of points (e.g. [SS19, §2.2])

$$\operatorname{Conf}_{\{1,\cdots,n\}}(\mathbf{X}) := \left\{ z^1, \cdots, z^n \in \mathbf{X} \mid \underset{i < j}{\forall} z^i \neq z^j \right\}.$$

with
$$\omega_1 := \sum_{1 \le i \le n} \sum_I -\frac{w_I}{\kappa} \frac{dz}{z - z_I} + \sum_{1 \le i < j \le n} \frac{2}{\kappa} \frac{dz}{z^i - z^j}$$
 on $\operatorname{Conf}_{\{1, \cdots, n\}} (\mathbb{C} \setminus \{\vec{z}\})$

Then:

$$\mathfrak{su}(2)\text{-affine deg}=n \text{ conformal blocks}$$

$$\operatorname{CnfBlck}^{n}_{\mathfrak{sl}_{2}^{k}}(\vec{w},\vec{z}) \hookrightarrow H^{n}\left(\Omega^{\bullet}_{\mathrm{dR}}\left(\operatorname{Conf}_{\{1,\cdots,n\}}\left(\mathbb{C}\setminus\{\vec{z}\}\right)\right), \mathrm{d}+\omega_{1}\wedge\right)$$
[FSV94, Cor. 3.4.2]

Generally, consider configuration spaces of points (e.g. [SS19, §2.2])

$$\operatorname{Conf}_{\{1,\cdots,n\}}(\mathbf{X}) := \left\{ z^1, \cdots, z^n \in \mathbf{X} \mid \underset{i < j}{\forall} z^i \neq z^j \right\}.$$

with
$$\omega_1 := \sum_{1 \le i \le n} \sum_I -\frac{w_I}{\kappa} \frac{dz}{z - z_I} + \sum_{1 \le i < j \le n} \frac{2}{\kappa} \frac{dz}{z^i - z^j}$$
 on $\operatorname{Conf}_{\{1, \cdots, n\}} (\mathbb{C} \setminus \{\vec{z}\})$

Then:
TED-Cohomological incarnation of Conformal blocks.

Generally, consider configuration spaces of points (e.g. [SS19, §2.2])

$$\operatorname{Conf}_{\{1,\cdots,n\}}(\mathbf{X}) := \left\{ z^1, \cdots, z^n \in \mathbf{X} \mid \underset{i < j}{\forall} z^i \neq z^j \right\}.$$

with
$$\omega_1 := \sum_{1 \le i \le n} \sum_I -\frac{w_I}{\kappa} \frac{dz}{z - z_I} + \sum_{1 \le i < j \le n} \frac{2}{\kappa} \frac{dz}{z^i - z^j}$$
 on $\operatorname{Conf}_{\{1, \cdots, n\}} (\mathbb{C} \setminus \{\vec{z}\})$

Then:

$$\mathfrak{su}(2)-\mathfrak{affine deg=n} \operatorname{conformal blocks} CnfBlck^{n}_{\mathfrak{sl}_{2}^{k}}(\vec{w},\vec{z}) \hookrightarrow H^{n}\left(\Omega^{\bullet}_{dR}\left(\operatorname{Conf}_{\{1,\cdots,n\}}\left(\mathbb{C}\setminus\{\vec{z}\}\right)\right), d+\omega_{1}\wedge\right)$$
 [FSV94, Cor. 3.4.2]
$$\hookrightarrow \operatorname{KU}^{n+\omega_{1}}\left(\left(\operatorname{Conf}_{\{1,\cdots,n\}}\left(\mathbb{C}\setminus\{\vec{z}\}\right)\right)\times */\!\!/C_{\kappa};\mathbb{C}\right)$$
 [SS22, Thm. 2.18]
inner local system-twisted deg=n K-theory
of configurations in $\mathbb{A}_{\kappa-1}$ -singularity

The previous statement is subsumed since $\operatorname{Conf}_{\{1\}}(X) = X$.

The commonly expected $\widehat{\mathfrak{su}_2}^k$ -charges of anyons and defect branes *are* reflected in the TED-K-theory of *configuration spaces of points* in 2-dimensional transverse spaces *inside* \mathbb{A}_{k+1} -*orbi-singularities*.

The commonly expected $\widehat{\mathfrak{su}}_2^k$ -charges of anyons and defect branes *are* reflected in the TED-K-theory of *configuration spaces of points* in 2-dimensional transverse spaces *inside* \mathbb{A}_{k+1} -*orbi-singularities*.

This is compatible with traditional brane charge quantization (only) in degree 1

The commonly expected $\widehat{\mathfrak{su}}_2^k$ -charges of anyons and defect branes *are* reflected in the TED-K-theory of *configuration spaces of points* in 2-dimensional transverse spaces *inside* \mathbb{A}_{k+1} -*orbi-singularities*.

This is compatible with traditional brane charge quantization (only) in degree 1 while in general degree it is compatible under <u>Hypothesis H</u>, which asserts [SS19] that quantum states of branes are in the generalized cohomology of *Cohomotopy* cocycle spaces of spacetime:

The commonly expected $\widehat{\mathfrak{su}_2}^k$ -charges of anyons and defect branes *are* reflected in the TED-K-theory of *configuration spaces of points* in 2-dimensional transverse spaces *inside* \mathbb{A}_{k+1} -*orbi-singularities*.

This is compatible with traditional brane charge quantization (only) in degree 1 while in general degree it is compatible under <u>Hypothesis H</u>, which asserts [SS19] that quantum states of branes are in the generalized cohomology of *Cohomotopy* cocycle spaces of spacetime:

- 0 Cohesive ∞-Topoi
- I Equivariant ∞-Bundles
- II TED-K-Theory
- III Anyonic Defect Branes
- IV Quantum Computation

For expository outlook on

Topological Quantum Programming in TED-K [arXiv:2209.08331]

see:

ncatlab.org/nlab/files/CQTS-InitialResearcherMeeting-Schreiber-220914.pdf

References

[FSV94] B. Feigin, V. Schechtman, and A. Varchenko: On algebraic equations satisfied by hypergeometric correlators in WZW models, I Comm. Math. Phys. 163 (1994), 173–184, [doi:10.1007/BF02101739]

[SS19] H. Sati and U. Schreiber: Differential Cohomotopy implies intersecting brane observables Adv. Theor. Math. Phys. 26 4 (2022) [arXiv:1912.10425]

[SS22-Bun] H. Sati and U. Schreiber: Equivariant principal ∞-bundles, [arXiv:2112.13654]

[SS22] H. Sati and U. Schreiber: Anyonic defect branes in TED-K-Theory [arXiv:2203.11838]

References

[Karoubi 70] M. Karoubi:

Espaces Classifiants en K-Théorie, Trans. of the Amer. Math. Soc. **147** (1970), 75-115, [doi:10.2307/1995218]

[KS77] M. Klaus and G. Scharf: The regular external field problem in quantum electrodynamics, Helv. Phys. Acta 50 (1977) [doi:10.5169/seals-114890]

[CHO82] A. L. Carey, C. A. Hurst, and D. M. O'Brien: Automorphisms of the canonical anticommutation relations and index theory J. Funct. Anal. 48 (1982) 360-393 [doi:10.1016/0022-1236(82)90092-1]

[FM12] D. S. Freed and G. W. Moore: *Twisted equivariant matter*, Ann. Henri Poincaré 14 (2013), 1927–2023, [doi:10.1007/s00023-013-0236-x] [arXiv:1208.5055]

References

[OV96] H. Ooguri and C. Vafa:

Two-Dimensional Black Hole and Singularities of CY Manifolds, Nucl. Phys. B 463 (1996), 55-72, [doi:10.1016/0550-3213(96)00008-9], [arXiv:hep-th/9511164]

[LLS02] W. Lerche, A. Lütken, and C. Schweigert: *D-Branes on ALE Spaces and the ADE Classification of CFTs*, Nucl. Phys. B **622** (2002), 269-278, [doi:10.1016/S0550-3213(01)00613-7], [arXiv:hep-th/0006247]

[Le00] W. Lerche:

On a Boundary CFT Description of Nonperturbative $\mathcal{N} = 2$ Yang-Mills Theory, [hep-th/0006100].

[dBS13] J. de Boer and M. Shigemori: Exotic Branes in String Theory, Phys. Rep. 532 (2013), 65-118, [arXiv:1209.6056] [doi:10.1016/j.physrep.2013.07.003].

Twisted, Equivariant, Differential (TED) K-Theory via Diffeological Stacks

Urs Schreiber on joint work with Hisham Sati

slides and pointers at: ncatlab.org/schreiber/show/TED+cohomology