random matrix




A random matrix is a matrix-valued random variable. Random matrix theory studies mainly the behaviour of eigenvalues and various functions of random matrices; as such it has large importance in physics.




See also:

  • V. L. Girko, Theory of random determinants, Transl. from Russian (Višča Škola, Kiev 1980, MR82h:60002) Mathematics and its Applications (Soviet Series) 45, Kluwer 1990, MR1080966

  • Freeman Dyson, Statistical theory of the energy levels of complex systems, I, J. Math. Phys. 3 1962 140–156, MR143556, doi; II, JMP 3 1962 157–165, MR143557, doi; III, JMP 3 1962 166–175, MR143558, doi; A Brownian-motion model for the eigenvalues of a random matrix, JMP 3 1962 1191–1198, MR148397, doi; Fredholm determinants and inverse scattering problems, Comm. Math. Phys. 47, 171–183 (1976) MR406201 euclid

  • J J M Verbaarschot, M R Zirnbauer, Critique of the replica trick, J. Phys. A: Math. Gen. 17 (1985) 1093-1109, pdf

  • Patrik L. Ferrari, Why random matrices share universal processes with interacting particle systems?, arxiv/1312.1126

  • Bertrand Eynard, Taro Kimura, Sylvain Ribault, Random matrices, lecture notes (arxiv/1510.04430)

  • Greg W. Anderson, Alice Guionnet, Ofer Zeitouni, An Introduction to Random Matrices, Cambridge Studies in Advanced Mathematics

In string/M-theory

Random matrix theory applies to black holes in string theory:

via the SYK model:

via the BFSS matrix model:

  • Haoxing Du, Vatche Sahakian, Emergent geometry from stochastic dynamics, or Hawking evaporation in M(atrix) theory (arXiv:1812.05020)

via AdS/CFT for Jackiw-Teitelboim gravity:

Last revised on May 20, 2021 at 02:53:52. See the history of this page for a list of all contributions to it.