quantum linear group

**Quantum linear semigroups** are bialgebras which are deformations of bialgebras of coordinate functions on the groups of $n\times n$-matrices for some $n$. They belong to the class of matrix bialgebras. The usual notation for the one-parametric version is $\mathcal{O}(M_q(n))$ or sometimes simply $\mathcal{M}_q(n)$.

Suppose we are given $n\times n$ matrices $P = (p_{ij})$ and $Q = (q_{ij})$ with invertible entries in the ground field $F$, for which there exist $q$ such that

$p_{ij} q_{ij} = q^2, q_{ij} = q^{-1}_{ji},\,\,\,\,\,i \lt j,\,\,and \,\,\,\,\,\,
q_{ii} = p_{ii},\,\,\,\,\,\,\, for\,\,\, all\,\,\,\, i.$

The multiparametric quantized matrix bialgebra (synonym: multiparametric quantum linear semigroup) $\mathcal{O}(M_{P,Q}(F,n)):= F \langle T^i_j , i,j = 1,\ldots, n\rangle/I$, where $I$ is the ideal spanned by the relations

(1)$\array{
T^k_i T^k_j = q_{ij} T^k_j T^k_i, & i \lt j \\
T^k_i T^l_i = p_{kl} T^l_i T^k_i, & k \lt l \\
q_{ij} T^k_j T^l_i = p_{kl} T^l_i T^k_j, & i\lt j,\,\,\,\,k\lt l \\
T^k_i T^l_j - q_{ij} q^{-1}_{kl} T^l_j T^k_i
= (q_{ij}-p_{ij}^{-1}) T^k_j T^l_i,& i\lt j,\,\,\,\,k\lt l
}$

$\mathcal{M} = \mathcal{O}(M_{P,Q}(F,n))$ is a bialgebra with respect to the “matrix” comultiplication which is the unique algebra homomorphism $\Delta : \mathcal{M} \to\mathcal{M} \otimes\mathcal{M}$ extending the formulas which are written in the matrix form as $\Delta T^i_j = \sum T^i_k \otimes T^k_j$ with counit $\epsilon T^i_j = \delta^i_j$ (Kronecker delta). This means that it is a matrix bialgebra with basis $\{T^i_j\}_{i,j=1,\ldots,n}$, in fact a free matrix bialgebra over $F$.

In these conventions, the 1-parametric version $\mathcal{O}(M_q(F))$ is obtained as a special case when $P = Q$ and $q_{ij} = q$ for $i \lt j$ and $q_{ij} = q^{-1}$ for $i \gt j$.

**Quantum linear groups** are Hopf algebras which are quantum deformations of Hopf algebras of coordinate functions on the general linear group or special linear group. There exist one parametric and many parametric versions as well as super analogues. They belong to the class of matrix Hopf algebras.

The usual notation for one-parametric versions is $\mathcal{O}(GL_q(n))$, $\mathcal{O}(SL_q(n))$ and variants thereof.

- related $n$Lab pages: quantum group, quantum Gauss decomposition, quantized function algebra, general linear group
- Yu. I. Manin,
*Quantum groups and non-commutative geometry*, CRM, Montreal 1988. - Yu. I. Manin,
*Multiparametric quantum deformation of the general linear supergroup*, Comm. Math. Phys. 123 (1989) 163–175. - B. Parshall, J.Wang,
*Quantum linear groups*, Mem. Amer. Math. Soc. 89(1991), No. 439, vi+157 pp. - E. E. Demidov,
*Multiparameter quantum deformations of the group $GL(n)$*, (Russian) Uspehi Mat. Nauk 46 (1991), no. 4 (280) 147–148; translation in Russian Math. Surveys 46 (1991) no. 4, 169–171. - M. Hashimoto, T. Hayashi,
*Quantum multilinear algebra*, Tohoku Math. J. 44 (1992) 471-521. - M. Artin, W. Schelter, J. Tate,
*Quantum deformations of $GL_n$*, Commun. Pure Appl. Math. XLIV, 879–895 (1991) - Zoran Škoda,
*Localizations for construction of quantum coset spaces*, math.QA/0301090, in “Noncommutative geometry and Quantum groups”, W.Pusz, P.M. Hajac, eds. Banach Center Publications vol.61, pp. 265–298, Warszawa 2003. - Z. Škoda,
*Every quantum minor generates an Ore set*, International Math. Res. Notices 2008, rnn063-8; math.QA/0604610 - Siân Fryer,
*From restricted permutations to Grassmann necklaces and back again*, arxiv/1511.06664

Last revised on February 10, 2016 at 09:20:01. See the history of this page for a list of all contributions to it.