nLab practical foundation of mathematics



Type theory

natural deduction metalanguage, practical foundations

  1. type formation rule
  2. term introduction rule
  3. term elimination rule
  4. computation rule

type theory (dependent, intensional, observational type theory, homotopy type theory)

syntax object language

computational trinitarianism =
propositions as types +programs as proofs +relation type theory/category theory

logiccategory theorytype theory
trueterminal object/(-2)-truncated objecth-level 0-type/unit type
falseinitial objectempty type
proposition(-1)-truncated objecth-proposition, mere proposition
proofgeneralized elementprogram
cut rulecomposition of classifying morphisms / pullback of display mapssubstitution
cut elimination for implicationcounit for hom-tensor adjunctionbeta reduction
introduction rule for implicationunit for hom-tensor adjunctioneta conversion
logical conjunctionproductproduct type
disjunctioncoproduct ((-1)-truncation of)sum type (bracket type of)
implicationinternal homfunction type
negationinternal hom into initial objectfunction type into empty type
universal quantificationdependent productdependent product type
existential quantificationdependent sum ((-1)-truncation of)dependent sum type (bracket type of)
equivalencepath space objectidentity type/path type
equivalence classquotientquotient type
inductioncolimitinductive type, W-type, M-type
higher inductionhigher colimithigher inductive type
-0-truncated higher colimitquotient inductive type
coinductionlimitcoinductive type
presettype without identity types
completely presented setdiscrete object/0-truncated objecth-level 2-type/set/h-set
setinternal 0-groupoidBishop set/setoid
universeobject classifiertype of types
modalityclosure operator, (idempotent) monadmodal type theory, monad (in computer science)
linear logic(symmetric, closed) monoidal categorylinear type theory/quantum computation
proof netstring diagramquantum circuit
(absence of) contraction rule(absence of) diagonalno-cloning theorem
synthetic mathematicsdomain specific embedded programming language

homotopy levels






In the context of foundations of mathematics the term practical foundations (following a term introduced in (Taylor)) refers to emphasis on conceptually natural formalizations.

In my own education I was fortunate to have two teachers who used the term “foundations” in a common-sense way (rather than in the speculative way of the Bolzano-Frege-Peano-Russell tradition). This way is exemplified by their work in Foundations of Algebraic Topology, published in 1952 by Eilenberg (with Steenrod), and The Mechanical Foundations of Elasticity and Fluid Mechanics, published in the same year by Truesdell. The orientation of these works seemed to be “concentrate the essence of practice and in turn use the result to guide practice”. (Lawvere 2003: 213)

Formal systems of interest here are natural deduction in type theories, which allow natural expressions for central concepts in mathematics, notably via their categorical semantics and the conceptual strength of category theory (see Harper).


  • William Lawvere, Foundations and applications: axiomatization and education, Bulletin of Symbolic Logic 9 (2003), 213-224 (ps)

Under computational trinitarianism this corresponds to a practical foundation in programming, laid out in

A foundation for algebraic topology in this practical spirit is laid out in

Last revised on November 10, 2018 at 07:52:02. See the history of this page for a list of all contributions to it.