A neural network is a class of functions used in both supervised and unsupervised? learning to approximate a correspondence between samples in a dataset and their associated labels.
Where $K\subset \mathbb{R}^d$ is compact, $\{T_L\}_{L\leq N \in \mathbb{N}}$ a finite set of affine maps such that $T_L(x) = \langle W_L,x\rangle + b_L$ where $W_L$ is the $L^{th}$ layer weight matrix and $b_L$ the $L^{th}$ layer bias, $g:\mathbb{R}\to\mathbb{R}$ a non-linear activation function, a neural network is a function $f:K\subset \mathbb{R}^d \to \mathbb{R}^m$, such that on input $x$, computes the composition:
where $g$ is applied component-wise.
Typically, $T_1$ is called the input layer, $T_L$ the output layer, and layers $T_2$ to $T_{L-1}$ are hidden layers. In particular, a real-valued 1-hidden layer neural network with computes:
where $a = (a_1, \dots, a_n)$ is the output weight, $b'$ the output bias, $W_i$ the $i^{th}$ row of the hidden weight matrix, and $b$ the hidden bias. Here, the hidden layer is $n$-dimensional.
On the learning algorithm as gradient descent of the loss functional:
On the learning algorithm as analogous to the AdS/CFT correspondence:
Yi-Zhuang You, Zhao Yang, Xiao-Liang Qi, Machine Learning Spatial Geometry from Entanglement Features, Phys. Rev. B 97, 045153 (2018) (arxiv:1709.01223)
W. C. Gan and F. W. Shu, Holography as deep learning, Int. J. Mod. Phys. D 26, no. 12, 1743020 (2017) (arXiv:1705.05750)
J. W. Lee, Quantum fields as deep learning (arXiv:1708.07408)
Koji Hashimoto, Sotaro Sugishita, Akinori Tanaka, Akio Tomiya, Deep Learning and AdS/CFT, Phys. Rev. D 98, 046019 (2018) (arxiv:1802.08313)
A category theoretic treatment of back propagation:
Last revised on January 14, 2020 at 17:20:07. See the history of this page for a list of all contributions to it.