nLab monoidal topos

Contents

Context

Monoidal categories

monoidal categories

topos theory

Contents

Idea

Every topos $\mathbf{H}$ is canonically a cartesian monoidal category $(\mathbf{H}, \times)$, with the tensor product being the cartesian product. If in addition to this canonical product $\mathbf{H}$ is equipped with another noncartesian monoidal category structure $\otimes$, then $(\mathbf{H}, \otimes)$ might be called a monoidal topos.

Of course, a topos may carry more than one non-cartesian monoidal category structure, and in some of the interesting examples, the various monoidal structures will be interlinked in some way. A typical example is the phenomenon of plethysm.

Examples

Example

For $(\mathcal{C}, \otimes)$ a small monoidal category, the presheaf topos $[\mathcal{C}, Set]$ is naturally a monoidal topos with respect to the Day convolution tensor product.

Example

For $\mathbf{H}$ a topos and $\mathbb{G} \in \mathbf{H}$ a monoid object, the slice topos $\mathbf{H}_{/\mathbb{G}}$ inherits a non-cartesian monoidal structure $\otimes_G$ induced from the product structure on $\mathbb{G}$:

$\left[ \array{ X_1 \\ \downarrow^{\mathrlap{\chi_1}} \\ \mathbb{G} } \right] \otimes_{\mathbb{G}} \left[ \array{ X_2 \\ \downarrow^{\mathrlap{\chi_2}} \\ \mathbb{G} } \right] \;\; \coloneqq \;\; \left[ \array{ X_1 \times X_2 \\ \downarrow^{\mathrlap{(\chi_1, \chi_2)}} \\ \mathbb{G} \times \mathbb{G} \\ \downarrow^{\mathrlap{\cdot}} \\ \mathbb{G} } \right] \,.$

Such monoidal toposes appear as categories of local action functionals in the context of motivic quantization.

Example

The classifying topos for the theory of objects which is the presheaf topos $[FinSet, Set]$ on the opposite category of FinSet or equivalently the category of finitary endofunctors $End_f(Set)$ is naturally a monoidal topos under composition of endofunctors. A standard textbook reference is (Johnstone D3.2). The enriched category theory over this monoidal category is discussed in (Garner 13).

Example

There are several variations on the theme of the previous example , where one considers presheaves on the “$\underline{\;\;\;\;\;}$” monoidal category $M$ generated by a single object, where the “blank” may be filled in with some structure-connoting adjective. In the previous example, we had that $FinSet^{op}$ is the free cartesian monoidal category generated by a single object, but the blank might be filled in with “symmetric” ($M$ is the permutation category $\mathbb{P} = Core(FinSet)$), or “braided” (the braid category $\mathbb{B}$), or “semicartesian symmetric monoidal” ($Fin_{inj}$: finite sets and injections between them), or “strict” (the discrete category $\mathbb{N}$), and so on. In each of these cases, the presheaf topos $E = [M^{op}, Set]$ acquires a Day convolution structure, but more interestingly, we have an equivalence

$E \simeq \{E, E\}$

where the right side is the category of cocontinuous $\underline{\;\;\;\;\;}$ monoidal endofunctors. By transferring the endofunctor composition across the equivalence, $E$ acquires another monoidal product structure. In the classical symmetric case, this goes under names like plethystic monoidal product, and in each such case the notion of monoid therein gives a notion of operad. See also generalized multicategory. For more on this see at operad – A detailed conceptual treatment.

Example

The category of dendroidal sets is a topos (the presheaf topos on the tree category) and naturally carries the non-cartesian Boardman-Vogt tensor product.

Example

In (Dolan 11) is indicated a category of “toric quasicoherent sheaves” which is a topos and hence under tensor product of quansicoherent sheaves a (semi?)-monoidal topos.

For references on Day convolution see there.

The monoidal classifying topos for the theory of objects is discussed for instance in

A monoidal classifying topos of “toric quasicoherent sheaves” is indicated in

• James Dolan, tannakian correspondence for toric varieties (sketch for a doctoral thesis), December 2011 (web)