nLab
monoidal dagger category
Contents
Context
Category theory
category theory
Concepts
Universal constructions
Theorems
Extensions
Applications
Contents
Definition
A monoidal dagger category is a dagger category C C with a dagger functor ( − ) ⊗ ( − ) : ( C × C ) → C (-)\otimes(-): (C \times C) \to C from the product dagger category of C C to C C itself called the tensor product and an object Ι ∈ Ob ( C ) \Iota \in Ob(C) called the tensor unit , such that
for all morphisms f ∈ Hom C ( D , E ) f \in Hom_C(D,E) and g ∈ Hom C ( F , G ) g \in Hom_C(F,G) , ( f ⊗ g ) † = f † ⊗ g † (f \otimes g)^\dagger = f^\dagger \otimes g^\dagger
for all objects D ∈ Ob ( C ) D \in Ob(C) , E ∈ Ob ( C ) E \in Ob(C) , F ∈ Ob ( C ) F\in Ob(C) , a natural unitary isomorphism? called the associator of D D , E E , and F F ,
alpha D , E , F : ( D ⊗ E ) ⊗ F ≅ † D ⊗ ( E ⊗ F ) alpha_{D, E, F}:(D\otimes E)\otimes F \cong^\dagger D\otimes(E\otimes F)
for objects A ∈ Ob ( C ) A \in Ob(C) , a natural unitary isomorphism called the left unitor of A A ,
λ A : Ι ⊗ A ≅ † A \lambda_{A}: \Iota\otimes A \cong^\dagger A
for objects A ∈ Ob ( C ) A \in Ob(C) , a natural unitary isomorphism called the right unitor of A A
ρ A : A ⊗ Ι ≅ † A \rho_{A}: A\otimes\Iota \cong^\dagger A
all objects A ∈ Ob ( C ) A \in Ob(C) and B ∈ Ob ( C ) B \in Ob(C) satify the triangle identity :
ρ A ⊗ Ι B = ( 1 A ⊗ ρ B ) ∘ α A , Ι , B \rho_A \otimes \Iota_B = (1_A \otimes \rho_B) \circ \alpha_{A, \Iota, B}
all objects D ∈ Ob ( C ) D \in Ob(C) , E ∈ Ob ( C ) E \in Ob(C) , F ∈ Ob ( C ) F \in Ob(C) , G ∈ Ob ( C ) G \in Ob(C) satisfy the pentagon identity :
α D , E , F ⊗ G ∘ α D ⊗ E , F , G = ( id D ⊗ α E , F , G ) ∘ α D , E ⊗ F , G ∘ ( α D , E , F ⊗ id G ) \alpha_{D, E, F \otimes G} \circ \alpha_{D \otimes E, F, G} = (id_D \otimes \alpha_{E, F, G}) \circ \alpha_{D, E \otimes F, G} \circ (\alpha_{D, E, F} \otimes id_G)
Examples
See also
Last revised on May 16, 2022 at 00:48:39.
See the history of this page for a list of all contributions to it.