little string

There is, by the brane scan, a superstring propagating in the 6-dimensional worldvolume of an NS5-brane. This is often called the *little string* of little string theory, with respect to the superstrings in the ambient 10-dimensional heterotic supergravity and type II supergravity that in turn the NS5-brane is propagating in.

The **brane scan**.

The Green-Schwarz type super $p$-brane sigma-models (see at *table of branes* for further links and see at *The brane bouquet* for the full classification):

$\stackrel{d}{=}$ | $p =$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|

11 | M2 | M5 | ||||||||

10 | D0 | F1, D1 | D2 | D3 | D4 | NS5, D5 | D6 | D7 | D8 | D9 |

9 | * | |||||||||

8 | $\ast$ | |||||||||

7 | M2${}_{top}$ | |||||||||

6 | F1${}_{little}$, S1${}_{sd}$ | S3 | ||||||||

5 | $\ast$ | |||||||||

4 | * | * | ||||||||

3 | * |

(The first columns follow the exceptional spinors table.)

The corresponding exceptional super L-∞ algebra cocycles (schematically, without prefactors):

$\stackrel{d}{=}$ | $p =$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|---|

11 | $\Psi^2 E^2$ on sIso(10,1) | $\Psi^2 E^5 + \Psi^2 E^2 C_3$ on m2brane | ||||||||

10 | $\Psi^2 E^1$ on sIso(9,1) | $B_2^2 + B_2 \Psi^2 + \Psi^2 E^2$ on StringIIA | $\cdots$ on StringIIB | $B_2^3 + B_2^2 \Psi^2 + B_2 \Psi^2 E^2 + \Psi^2 E^4$ on StringIIA | $\Psi^2 E^5$ on sIso(9,1) | $B_2^4 + \cdots + \Psi^2 E^6$ on StringIIA | $\cdots$ on StringIIB | $B_2^5 + \cdots + \Psi^2 E^8$ in StringIIA | $\cdots$ on StringIIB | |

9 | $\Psi^2 E^4$ on sIso(8,1) | |||||||||

8 | $\Psi^2 E^3$ on sIso(7,1) | |||||||||

7 | $\Psi^2 E^2$ on sIso(6,1) | |||||||||

6 | $\Psi^2 E^1$ on sIso(5,1) | $\Psi^2 E^3$ on sIso(5,1) | ||||||||

5 | $\Psi^2 E^2$ on sIso(4,1) | |||||||||

4 | $\Psi^2 E^1$ on sIso(3,1) | $\Psi^2 E^2$ on sIso(3,1) | ||||||||

3 | $\Psi^2 E^1$ on sIso(2,1) |

See also

- Wikipedia,
*Little string theory*

On D=3 N=4 super Yang-Mills theories with compact hyperkähler manifold Coulomb branches obtained by KK-compactification of little string theories:

- Kenneth Intriligator,
*Compactified Little String Theories and Compact Moduli Spaces of Vacua*, Phys. Rev. D61:106005, 2000 (arXiv:hep-th/9909219)

Last revised on December 31, 2019 at 05:18:06. See the history of this page for a list of all contributions to it.