nLab
glueball

Contents

Context

Fields and quanta

field (physics)

standard model of particle physics

force field gauge bosons

scalar bosons

matter field fermions (spinors, Dirac fields)

flavors of fundamental fermions in the
standard model of particle physics:
generation of fermions1st generation2nd generation3d generation
quarks (qq)
up-typeup quark (uu)charm quark (cc)top quark (tt)
down-typedown quark (dd)strange quark (ss)bottom quark (bb)
leptons
chargedelectronmuontauon
neutralelectron neutrinomuon neutrinotau neutrino
bound states:
mesonslight mesons:
pion (udu d)
ρ-meson (udu d)
ω-meson (udu d)
f1-meson
a1-meson
strange-mesons:
ϕ-meson (ss¯s \bar s),
kaon, K*-meson (usu s, dsd s)
eta-meson (uu+dd+ssu u + d d + s s)

charmed heavy mesons:
D-meson (uc u c, dcd c, scs c)
J/ψ-meson (cc¯c \bar c)
bottom heavy mesons:
B-meson (qbq b)
ϒ-meson (bb¯b \bar b)
baryonsnucleons:
proton (uud)(u u d)
neutron (udd)(u d d)

(also: antiparticles)

effective particles

hadron (bound states of the above quarks)

solitons

minimally extended supersymmetric standard model

superpartners

bosinos:

sfermions:

dark matter candidates

Exotica

auxiliary fields

Contents

Idea

In quantum chromodynamics, in fact already in pure SU(3) Yang-Mills theory, a glueball is a bound state of (just) gluons (a kind of confinement).

Glueballs are hard to detect in experiment but their existence is confirmed by lattice QCD, also by the AdS-QCD correspondence (see there). According to Greensite 11, section 8.5:

The caloron idea is probably the most promising current version of monopole confinement in pure non-abelian gauge theories, but it is basically (in certain gauges) a superposition of monopoles with spherically symmetric abelian fields, and this leads to the same questions raised in connection with monopole Coulomb gases.

References

See also

Created on December 3, 2018 at 08:44:56. See the history of this page for a list of all contributions to it.