# nLab comodule

Contents

### Context

#### Algebra

higher algebra

universal algebra

# Contents

## Idea

A comodule is to a comonoid as a module is to a monoid. Where a module is equipped with an action, a comodule is dually equipped with a coaction.

## Definition

Given a comonoid $C$ with comultiplication $\Delta_C: C\to C\otimes C$ and counit $\epsilon:C\to \mathbf{1}$ in a monoidal category $\mathcal{M}$, and an object $M$ in $\mathcal{M}$, a left $C$-coaction is

• a morphism $\rho: M\to C\otimes M$

• which is

• coassociative i.e. (for $\mathcal{M}$ nonstrict use the canonical isomorphism $C\otimes (C\otimes M)\cong (C\otimes C)\otimes M$ to compare the sides) $(\Delta_C\otimes\mathrm{id}_M)\circ\rho = (\mathrm{id}_C\otimes\rho)\circ\rho: M\to C\otimes C\otimes M$

• and counital i.e. $(\epsilon\otimes \mathrm{id}_M)\circ\rho = \mathrm{id}_M$ (in this formula, $\mathbf{1}\otimes M$ is identified with $M$).

In some monoidal categories, e.g. of (super)vector spaces, and of Hilbert spaces, one often says (left/right) corepresentation instead of (left/right) coaction.

## The category of comodules

Let $k$ be a commutative ring and let $\mathcal{M} = Mod(k)$. Then one has the following properties:

See Wischnewsky.

## Examples

Properties of the category of comodules over a coalgebra are studied in

• Manfred Wischnewsky, On linear representations of affine groups, I, Pacific Journal of Mathematics, Vol. 61, No. 2, 1975, Project Euclid.